

East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

Sections 404/401 Clean Water Act (CWA) Permit Application

Prepared for:

Kentucky Department of Fish and Wildlife Resources

EAST FORK LITTLE SANDY STREAM RESTORATION PROJECT LAWRENCE COUNTY, KENTUCKY

SECTIONS 404/401 CLEAN WATER ACT (CWA) PERMIT APPLICATION OUTLINE

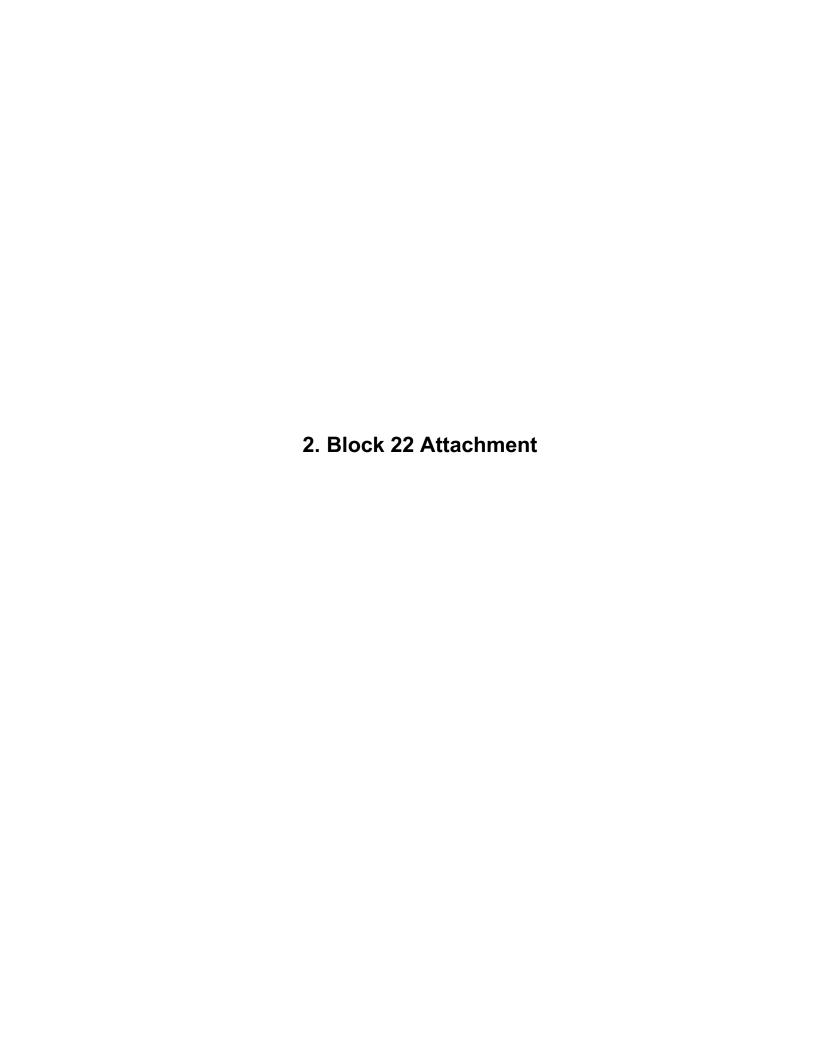
- I. Section 404 Nationwide Permit Application and Attachments
 - 1. Permit Application
 - 2. Block 22 Attachment
 - 3. Block 24 Attachment
- II. Section 401 Water Quality Certification Application
 - 1. Water Quality Certification Application
- III. Jurisdictional Determination Forms
 - 1. Overview Table of Jurisdictional Waters
 - 2. Preliminary Jurisdictional Determination Forms
 - 3. Jurisdictional Waters of the United States Map
- IV. Mitigation Plan
 - 1. Mitigation Plan Report
 - 2. Appendices
- V. Agency Correspondence
 - 1. State Historic Preservation Officer
 - 2. Department of the Interior

I. Section 404 Nationwide Permit Application and Attachments

APPLICATION FOR DEPARTMENT OF THE ARMY PERMIT (33 CFR 325)

OMB APPROVAL NO. 0710-003

Public reporting burden for this collection of information is estimated to average 5 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Service Directorate of Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302; and to the Office of Management and Budget, Paperwork Reduction Project (0710-0003), Washington, DC 20503. Please DO NOT RETURN your form to either of those addresses. Completed applications must be submitted to the District Engineer having jurisdiction over the location of the proposed activity.

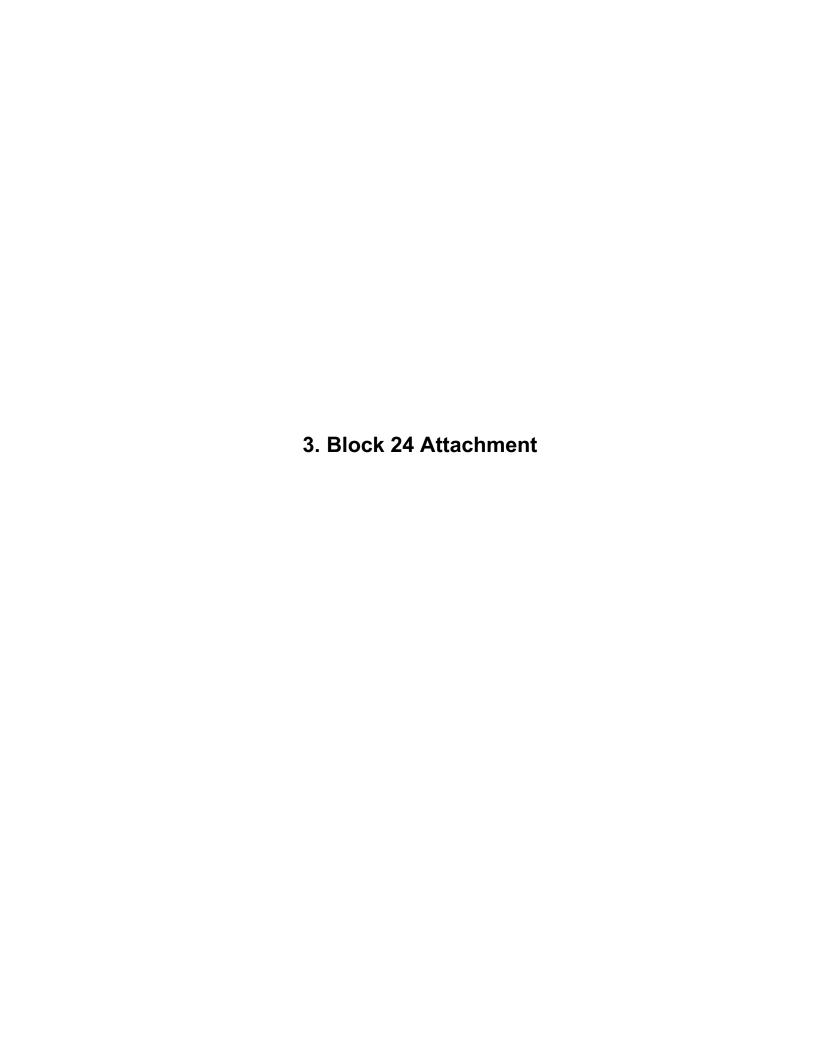

PRIVACY ACT STATEMENT

Authority: 33 USC 401, Section 10: 1413, Section 404. Principal Purpose: These laws require authorizing activities in or affecting, navigable waters of the United States, the discharge or fill material into waters of the United States, and the transportation of dredged material for the purpose of dumping it into ocean waters. Routine Uses: Information provided on this form will be used in evaluating the application for a permit. Disclosure: Disclosure of requested information is voluntary. If information is not provided, however, the permit application cannot be processed nor can a permit be issued. One set of original drawings or good reproducible copies which show the location and character of the proposed activity must be attached to this application (see sample drawings and instructions) and be submitted to the District Engineer having jurisdiction over the location of the proposed activity. An application that is not completed in full will be returned.

(ITEMS 1 THRU 4 TO BE FILLED BY THE CORPS)					
1. APPLICATION NO.	2. FIELD OFFICE CODE	3. DATE RECEIVED	4. DATE APPLICATION COMPLETED		
	(ITEMS BELOW TO I	BE FILLED BY APPLICANT)			
APPLICANT'S NAME Kentucky Department of Fish and Wildlife Resources Benjamin Kinman		8. AUTHORIZED AGENT'S NAME A Stantec Consulting Services, In- Stephen D. Hall, Senior Associa	c.		
APPLICANT'S ADDRESS Kentucky Department of Fish and Wildlife Resources #1 Sportsman's Lane Frankfort, KY 40601		9. AGENT'S ADDRESS Stantec Consulting Services, Inc 350 Missouri Ave Suite 100 Jeffersonville, IN 47130	с.		
7. APPLICANT'S PHONE NOs. W a. Residence b. Business (502) 564-3400 e.		10. AGENT'S PHONE NOs. W/AREA a. Residence b. Business (812) 285-4060	CODE		
	STATEMENT	OF AUTHORIZATION			
11. I hereby authorize,Stephen D. Hall, Stantec Consulting Services, Incto act in my behalf as my agent in the processing of this application and to furnish, upon request, supplemental information in support of this permit application. APPLICANT'S SIGNATURE					
NAME, LOCATION, AND DESCRIPTION OR PROJECT OR ACTIVITY					
	12. PROJECT NAME OR TITLE (see instructions)				
East Fork Little Sandy Stream	East Fork Little Sandy Stream Restoration Project				
13. NAME OF WATERBODY, IF I	KNOWN (if applicable)	14. PROJECT STREET ADDR	ESS (if applicable)		
East Fork Little Sandy River	and Little East Fork	Sunset Ranch, 800 Hwy 1796	6 Louisa, KY 41230		
15. LOCATION OF PROJECT					
Lawrence	Kentucky				
COUNTY	STATE				
16. OTHER LOCATION DESCR	PTIONS, IF KNOWN (see instructions) Section	on, Township, Range, Lat/Lon, and/or Access	ors's Parcel Number, for example.		
USGS Fallsburg, KY Quad	(38 ° 13'05" N, 82°44'25" W)				
17. DIRECTIONS TO THE SITE					
From Louisville, take I-64 East to Exit 172, go south on Route 7 into Grayson; At Grayson, go south on Route 1 for approximately 9.5 miles to Willard; after Willard, turn left onto Route 1496; Travel approximately 8.7 miles on Route 1496 to the site. The majority of the project is located on Sunset Ranch.					

18.	Nature of Activity (Descrip	tion of project, include all	features)				
	tributaries. This include creation of a floodplain	les the relocation of by benching along	oration and enhancement of ap f 9,511 LF of stream to increase g one or both sides of the chanr ovide erosion and grade contro	e sinuosity and decre	ease erosion potent existing channel; in	tial. Restoration activitionstallation of in-stream	ies include: the structures that
19.	Project Purpose (Desc	cribe the reason or	purpose of the project, see ins	tructions)			
			ne KY Department of Fish and e Sandy River project area.	Wildlife Resources,	this project will resu	ult in the restoration of	the function and
	USE	E BLOCKS 20-2	22 IF DREDGED AND/OR	FILL MATERIAL	L IS TO BE DISC	CHARGED	
20.	Reason(s) for Discharge	•					
	To ultimately enhand being relocated in the		vill need to be discharged into s	sections of East Fork	Little Sandy River	and Little East Fork wh	nere portions are
21.	Type(s) of Material Bei	ng Discharged and	I the Amount of Each Type in C	Cubic Yards			
			ive rock and soil will be placed soil that will place in the existin				
22.	Surface Area in Acres	of Wetlands or Othe	er Waters Filled (see instructio	ins)			
	There are no wetlands Approximately 5.51 acr		ect. e impacted in this project.				
23.	Is Any Portion of the Wo	ork Already Complete	e? Yes No <u>X</u>	ESCRIBE THE COMP	LETED WORK		
24.	Addresses of Adjoining Fattach a supplemental list).	Property Owners, Le	essees, Etc., Whose Property Ad	ljoins the Waterbody (I	If more than can be entered	ed here, please	
	See Attachment Block	24					
25.			nials Received from other Federa IDENTIFICATION NUMBER	ıl, State, or Local Ager DATE APPLIED		ribed in This Application. D DATE DENIED	
		401 WQC Floodplain			Pending Approval Pending Approval		
26.	Application is hereby r application is complete duly authorized agent of	e and accurate. I fu	or permits to authorize the wurther certify that I possess the	ork described in this authority to underta	s application. I cel ake the work descri	rtify that the informatic	on in this
	SIGNATURE OF A		DATE	SIGNATURE O	F AGENT	DATE	_
	duly authorized ager 18 U.S.C. Section 1001 p falsifies, conceals, or cove	nt if the statemen provides that: Whoevers up any trick, scher or document knowing	the person who desires to unit in block 11 has been fille ver, in any manner within the juriscence, or disguises a material fact or g same to contain any false, fictition	ed out and signed. diction of any departme makes any false, fictitio	ent or agency of the U	Inited States knowingly arements or representations	nd willfully or makes

ENG FORM 4345, Feb 94 EDITION OF SEP 91 IS OBSOLETE (Proponent: CECW-OR)



BLOCK 22 ATTACHMENT

SUMMARY OF SECTION 404 RELOCATED STREAM LENGTHS

East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

Affected Stream	Watershed Area (Sq. Mi.)	Flow Regime	Affected Length (Ft.)	Area of Waters Affected (Ac.)
East Fork Little Sandy Reach 1	7.59	Perennial	4,165	3.01
Little East Fork Reach 1	2.16	Perennial	1,627	0.68
Little East Fork Tributary	0.067	Intermittent	280	0.04
Tributary 1 Reach 1	0.152	Intermittent	590	0.09
Tributary 1 Reach 2	0.219	Intermittent	1,770	0.35
Tributary 1 Reach 3	0.306	Intermittent	661	0.15
Tributary 1A	0.025	Ephemeral	108	0.01
Tributary 2 Reach 2	0.025	Intermittent	310	0.05
Tot	al		9,511	4.38

ADDRESSES OF ADJOINING PROPERTY OWNERS

East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

Jack Holcomb Sunset Ranch 800 Hwy 1496 Louisa, KY 41230 606-686-1100

Elmer Lucas Route 1 Box 129 Salt Rock, WV 25559 304-736-9707

Bill Morehead PO Box 322 Louisa, KY 41230 606-686-9267

James Metz 513 Little East Fork Rd Louisa, KY 41230 606-686-2793

Carl Kirk 345 Little East Fork Rd Louisa, KY 41230 606-686-3369

II. Section 401 Water Quality C	ertification Application

1. Water Quality Certification Application	

COMMONWEALTH OF KENTUCKY NATURAL RESOURCES & ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRNOMENTAL PROTECTION DIVISION OF WATER

APPLICATION FOR PERMIT TO CONSTRUCT ACROSS OR ALONG A STREAM AND / OR WATER QUALITY CERTIFICATION

Chapter 151 of the Kentucky Revised Statutes requires approval from the Division of Water prior to any construction or other activity in or along a stream that could in any way obstruct flood flows or adversely impact water quality. If the project involves work in a stream, such as bank stabilization, dredging or relocation, you will also need to obtain a 401 Water Quality Certification (WQC) from the Division of Water. This completed form will be forwarded to the Water Quality Branch for WQC processing. The project may not start until all necessary approvals are received from the KDOW. For questions concerning the WQC process, contact WQC at 502/564-3410.

If the project will disturb more than 1 acre of soil, you will also need to complete the attached Notice of Intent for Storm Water Discharges, and return both forms to the Floodplain management Section of the KDOW. This general permit will require you to create an implement an erosion control plan for the project.

1.	OWNER: Benjamin Kinman, Kentucky Department of Fish & Wildlife Resources Give name of person(s), company, governmental unit, or other owner of proposed project.
	MAILING ADDRESS: #1 Sportsman's Lane
	Frankfort, KY 40601
	TELEPHONE #:(502) 564-3400 ext: 4466 EMAIL:Benjamin.Kinman@ky.gov
2.	AGENT: Stephen D. Hall, Stantec Consulting Services, Inc.
	Give name of person(s) submitting application, if other than owner.
	ADDRESS: 350 Missouri Ave, Ste. 100
	Jeffersonville, IN 47130
3.	ENGINEER: Joseph Eigel, PE, PhD Contact Division of Water if waiver can be granted. P.E. NUMBER: 14318
	TELEPHONE #:
4.	DESCRIPTION OF CONSTRUCTION: The proposed activity consists of the restoration and enhancement of
	approximately 12,757 feet of East Fork Little Sandy River and tributaries. This includes the relocation of
	approximately 9,511 LF of stream to increase sinuosity and decrease erosion potential. Restoration activities include
	the creation of a floodplain by benching along one or both sides of the channel, reshaping of the existing channel,
	installation of in-stream structures that will enhance aquatic habitat, as well as provide erosion and grade control,
	and the planting of riparian vegetation to provide stability along the banks.
5.	COUNTY: Lawrence NEAREST COMMUNITY: Louisa
6.	USGS QUAD NAME: <u>Fallsburg, KY</u> <u>LATITUDE/LONGITUDE: 38.0222° N, 82.9034° W</u>
7.	STREAM NAME: East Fork Little Sandy River
8.	LINEAR FEET OF STREAM IMPACTED: 12,757 LF
9.	DIRECTIONS TO SITE: From Louisville, take I-64 East to Exit 172; go south on Route 7 to Grayson. At Grayson, go south on Route 1 for approximately 9.5 miles to Willard. After Willard, turn left onto Route 1496. Travel approximately 8.7 miles on Route 1496 to the site. Most of the project is located on Sunset Ranch.
10.	IS ANY PORTION OF THE REQUESTED PROJECT NOW COMPLETE? Yes X No If yes, identify the
	completed portion on the drawings you submit and indicate the date activity was completed. DATE:
11.	ESTIMATED BEGIN CONSTRUCTION DATE: June 2009
12.	ESTIMATED END CONSTRUCTION DATE: December 2009

HAS A PERMIT a copy of that perm	BEEN RECEIVED FROM THE US ARMY, CORPS of ENGINEERS? Yes X No If yes, attach nit.
	T MUST ADDRESS PUBLIC NOTICE:
X Public	OTICE HAS BEEN GIVEN FOR THIS PROPOSAL BY THE FOLLOWING MEANS: enotice in newspaper having greatest circulation in area (provide newspaper clipping or affidavit) ent property owner(s) affidavits (Contact Division of Water for requirements.)
(b) I REQ	QUEST WAIVER OF PUBLIC NOTICE BECAUSE:
I HAVE CONTA	CTED THE FOLLOWING CITY OR COUNTY OFFICIALS CONCERNING THIS PROJECT:
	Tim S. Ellis, Local Floodplain Coordinator
Give na	ame and title of person(s) contacted and provide copy of any approval city or county may have issued.
	CHMENTS: Location Map (Figure 1 – USGS Topo-map); Table 1 Summary of 401 Effected 404 Permit Application
List plans, profiles, or	other drawings and data submitted. Attach a copy of a 7.5 minute USGS topographic map clearly showing the project location
	N WILL OCCUR (for dams, this includes the area that would be impounded during the design flood).
	proval for construction across or along a stream as described in this application and any accompanying best of my knowledge, all the information provided is true and correct.
	SIGNATURE: Owner or Agent sign here. (If signed by Agent, a Power of Attorney should be attached.)
	DATE:
	SIGNATURE OF LOCAL FLOODPLAIN COORDINATOR:
	Permit application will be returned to applicant if not properly endorsed by the local floodplain coordinator.
	DATE:
	SUBMIT APPLICATION AND ATTACHMENTS TO:

Floodplain Management Section Division of Water 200 Fair Oaks Lane. 4th Floor Frankfort, KY 40601

III.	Jurisdictional D	Determination	Forms	

1. Overview Table of Jurisdictional Waters

SUMMARY TABLE OF JURISDICTIONAL WATERS OF THE UNITED STATES

East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

Reach Number	Latitude	Longitude	Flow Regime	Existing Length in Project Area (LF)	Width of Channel (FT)	Area (acres)	Class of Aquatic Resource
EFLS	38.2219°N	82.7455°W	Perennial	5,000	31.5	3.62	non-section 10 – non- wetland
LEF-R1	38.2136°N	82.7470°W	Perennial	1,627	18.1	0.68	non-section 10 – non- wetland
LEF-R2	38.2157°N	82.7432°W	Perennial	1,491	13.1	0.45	non-section 10 – non- wetland
LEF Trib	38.2148°N	82.7466°W	Intermittent	280	5.5	0.04	non-section 10 – non- wetland
Trib1-R1	38.2296°N	82.7486°W	Intermittent	590	6.5	0.09	non-section 10 – non- wetland
Trib1-R2	38.2271°N	82.7476°W	Intermittent	1,770	8.5	0.35	non-section 10 – non- wetland
Trib1-R3	38.2243°N	82.7469°W	Intermittent	661	10.2	0.15	non-section 10 – non- wetland
Trib1A	38.2270°N	82.7470°W	Ephemeral	371	3.5	0.03	non-section 10 – non- wetland
Trib2-R1	38.2244°N	82.7507°W	Ephemeral	644	3.5	0.05	non-section 10 – non- wetland
Trib2-R2	38.2231°N	82.7500°W	Intermittent	310	6.5	0.05	non-section 10 – non- wetland
Reach Number	Latitude	Longitude	Flow Regime	Length in Project Area (LF)	Width of Channel (FT)	Area (acres)	Class of Aquatic Resource
WL 1	38.2151°N	82.7448°W	Wetland	-	-	0.78	Non- section 10
WL 2	38.2155°N	82.7438°W	Wetland	-	-	0.06	Non- section 10
	TOTAL PERENNIAL			8,118	-	4.75	-
		TOTAL IN	TERMITTENT	3,611	-	0.68	-
	TOTAL EPHEMERAL			1,015	-	0.08	-
	TOTAL WETLAND			-	-	0.84	-

^{*}Wetlands within the site are not to be disturbed

2. Preliminary Jurisdictional Determination Fo	rms

PRELIMINARY JURISDICTIONAL DETERMINATION FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): 03/12/2009
- B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:
 Benjamin Kinman
 Kentucky Department of Fish and Wildlife Resources
 #1 Sportsman's Lane
 Frankfort, KY 40601
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District Office, East Fork Little Sandy Stream Restoration Project (Sunset Ranch), East Fork of the Little Sandy River, Little East Fork Tributary 1, Little East Fork Tributary 2
- D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The proposed activity consists of the restoration and enhancement of approximately 12,757 linear feet of East Fork Little Sandy River and tributaries. The project is located approximately 18 miles south of Grayson, KY off Route 1496. (USE THE ATTACHED TABLE TO DOCUMENT MULTIPLE WATERBODIES AT DIFFERENT SITES)

State:KY County/parish/borough: Lawrence County City: Grayson Center coordinates of site (lat/long in degree decimal format): Lat. 38.2219° N, Long. 82.7455° W.

Universal Transverse Mercator: 16

Name of nearest waterbody: Little Sandy River

Identify (estimate) amount of waters in the review area:

Non-wetland waters: 8,118 linear feet: 20.9 average width (ft) and/or 4.75 acres.

Cowardin Class: Riverine Stream Flow: Perennial

Wetlands: 0.84 acres. Wetlands are located along Little East Fork River and will not be disturbed.

Cowardin Class: Emergent Scrub-shrub

Name of any water bodies on the site that have been identified as Section 10 waters:

Tidal: N/A Non-Tidal: N/A

- E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date: 01/12/2009
 - Field Determination. Date(s): 05/27/2008, 06/19/2008, 08/13/2008

- 1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.
- 2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable. This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for pro	
- checked items should be included in case	•
requested, appropriately reference sources	
Maps, plans, plots or plat submitted by	
applicant/consultant:Attached: Site Location US Map.	on Map, Jurisdictional Waters of the
□ Data sheets prepared/submitted by or	on behalf of the
applicant/consultant. Attached: RBP data s	
Office concurs with data sheets/deliOffice does not concur with data she	•
Data sheets prepared by the Corps:	•
Corps navigable waters' study:	
U.S. Geological Survey Hydrologic Atla	as: .
	and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite so	cale & quad name:1:24,000,
Fallsburg Quad.	- Consider Cail Cumrour
□ USDA Natural Resources Conservatior Citation: USDA and NRCS Soils Report for	
KY. Survey on 12/18/2007.	Lawrence and Martin Counties,
☐ National wetlands inventory map(s). C	ite name:
State/Local wetland inventory map(s):	
FEMA/FIRM maps:FIS: Lawrence Co.,	KY Community # 210258.
Revised: June 18, 1990.	•
100-year Floodplain Elevation is:	(National Geodectic Vertical Datum
of 1929)	
Photographs: Aerial (Name & Date)	•
Photography fsa_n19e_101 and fsa_n20e	
Stantec on 05/27/2008, 06/19/2008, 08/13	ached: Photo Log (photos taken by /2008.
☐ Previous determination(s). File no. and	d date of response letter:
Other information (please specify):	
MPORTANT NOTE: The information record	ded on this form has not
necessarily been verified by the Corps and	should not be relied upon for
ater jurisdictional determinations.	
	200
	< X100
Circulature and data of	Signature and date of
Signature and date of Regulatory Project Manager	Signature/and date of person requesting preliminary JD
REQUIRED)	(REQUIRED, unless obtaining
	the signature is impracticable)
	· · · · · · · · · · · · · · · · · · ·

SAMPLE

Site number	Latitude	Longitude	Cowardin Class	Estimated amount of aquatic resource in review area	Class of aquatic resource
EFLS	38.2219°N	82.7455°W	Riverine	5000 linear feet/ 3.62 acre	Non-section 10 – non-wetland
LEF-R1	38.2136°N	82.7470°W	Riverine	1,627 linear feet/ 0.68 acre	Non-section 10 – non-wetland
LEF-R2	38.2157°N	82.7432°W	Riverine	1,491 linear feet/ 0.45 acre	Non-section 10 – non-wetland
WL 1*	38.2151°N	82.7448°W	Riverine	0.78 acre	Non-section 10 – wetland
WL 2*	38.2155°N	82.7438°W	Riverine	0.06 acre	Non-section 10 – wetland

^{*}Wetlands within the site will not be disturbed.

PRELIMINARY JURISDICTIONAL DETERMINATION FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): 03/12/2009
- B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:
 Benjamin Kinman
 Kentucky Department of Fish and Wildlife Resources
 #1 Sportsman's Lane
 Frankfort, KY 40601
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District Office, East Fork Little Sandy Stream Restoration Project (Sunset Ranch), Little East Fork Tributary, Tributary 1 Reach 1, Tributary 1 Reach 2, Tributary 1 Reach 3, Tributary 2 Reach 2
- D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The proposed activity consists of the restoration and enhancement of approximately 12,757 linear feet of East Fork Little Sandy River and tributaries. The project is located approximately 18 miles south of Grayson, KY off Route 1496. (USE THE ATTACHED TABLE TO DOCUMENT MULTIPLE WATERBODIES AT DIFFERENT SITES)

State:KY County/parish/borough: Lawrence County City: Grayson Center coordinates of site (lat/long in degree decimal format): Lat. 38.2219° N, Long. 82.7455° W.

Universal Transverse Mercator: 16

Name of nearest waterbody: Little Sandy River

Identify (estimate) amount of waters in the review area:

Non-wetland waters: 3,611 linear feet: 7.4 average width (ft) and/or 0.68 acres.

Cowardin Class: Riverine Stream Flow: Intermittent Wetlands: N/A acres. Cowardin Class: N/A

Name of any water bodies on the site that have been identified as Section 10

waters:

Tidal: N/A Non-Tidal: N/A

- E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date: 01/12/2009
 - Kield Determination. Date(s): 05/27/2008, 06/19/2008, 08/13/2008

- 1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.
- 2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable: (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable. This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:

2

SUPPORTING DATA. Data reviewed for p	
- checked items should be included in case	
requested, appropriately reference source	es below):
US Map.	non map, bunsulctional waters of the
Data sheets prepared/submitted by or	on behalf of the
applicant/consultant. Attached: RBP data	sheets
Office concurs with data sheets/de	•
Office does not concur with data sh	neets/delineation report.
☐ Data sheets prepared by the Corps:	•
Corps navigable waters' study:	
U.S. Geological Survey Hydrologic Atl	as: .
☐ USGS NHD data. ☐ USGS 8	3 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite s	cale & quad name:1:24,000,
Fallsburg Quad.	0 : 0 110
☑ USDA Natural Resources Conservation	_
Citation: USDA and NRCS Soils Report fo KY. Survey on 12/18/2007.	l Lawrence and Martin Counties,
·	Cito namo:
☐ National wetlands inventory map(s). (one name.
State/Local wetland inventory map(s):	
FEMA/FIRM maps:FIS: Lawrence Co.	, KY Community # 210258.
Revised: June 18, 1990.	
☐ 100-year Floodplain Elevation is:	(National Geodectic Vertical Datum
of 1929)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Photography for p100 101 and for p200	
Photography fsa_n19e_101 and fsa_n20e or ⊠ Other (Name & Date):At	tached: Photo Log (photos taken by
Stantec on 05/27/2008, 06/19/2008, 08/13	-
☐ Previous determination(s). File no. an	nd date of response letter:
Other information (please specify):	
IMPORTANT NOTE: The information reco	
necessarily been verified by the Corps an later jurisdictional determinations.	u siloulu liot be lelled upoli loi
ator juriouronar actornmaticino	00
	1 4000
	THE STATE OF THE S
Signature and date of	Signature and date of
Regulatory Project Manager (REQUIRED)	person/requesting preliminary JD (REQUIRED, unless obtaining
(INEQUINED)	the signature is impracticable)

SAMPLE

Site number	Latitude	Longitude	Cowardin Class	Estimated amount of aquatic resource in review area	Class of aquatic resource
LEF Trib	38.2148°N	82.7466°W	Riverine	280 linear feet/ 0.04 acre	Non-section 10 – non-wetland
Trib 1-R1	38.2296°N	82.7486°W	Riverine	590 linear feet/ 0.09 acre	Non-section 10 – non-wetland
Trib 1-R2	38.2271°N	82.7476°W	Riverine	1,770 linear feet/ 0.35 acre	Non-section 10 – non-wetland
Trib 1-R3	38.2243°N	82.7469°W	Riverine	661 linear feet/ 0.15 acre	Non-section 10 – non-wetland
Trib2-R2	38.2231°N	82.7500°W	Riverine	310 linear feet/ 0.05 acre	Non-section 10 – non-wetland

PRELIMINARY JURISDICTIONAL DETERMINATION FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): 03/12/2009
- B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:
 Benjamin Kinman
 Kentucky Department of Fish and Wildlife Resources
 #1 Sportsman's Lane
 Frankfort, KY 40601
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District Office, East Fork Little Sandy Stream Restoration Project (Sunset Ranch), Tributary 1A, Tributary 2 Reach 1
- D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The proposed activity consists of the restoration and enhancement of approximately 12,757 linear feet of East Fork Little Sandy River and tributaries. The project is located approximately 18 miles south of Grayson, KY off Route 1496. (USE THE ATTACHED TABLE TO DOCUMENT MULTIPLE WATERBODIES AT DIFFERENT SITES)

State:KY County/parish/borough: Lawrence County City: Grayson Center coordinates of site (lat/long in degree decimal format): Lat. 38.2270° N, Long. 82.7470° W.

Universal Transverse Mercator: 16

Name of nearest waterbody: Little Sandy River

Identify (estimate) amount of waters in the review area:

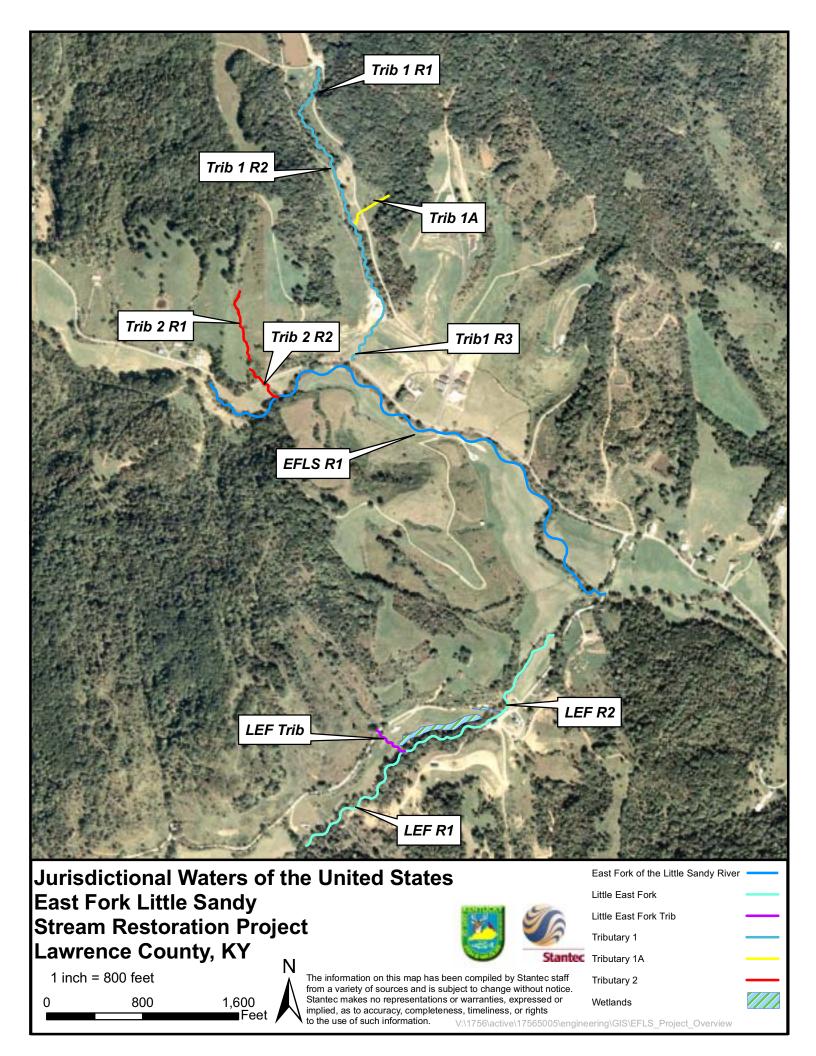
Non-wetland waters: 1,015 linear feet: 3.5 width (ft) and/or 0.08 acres.

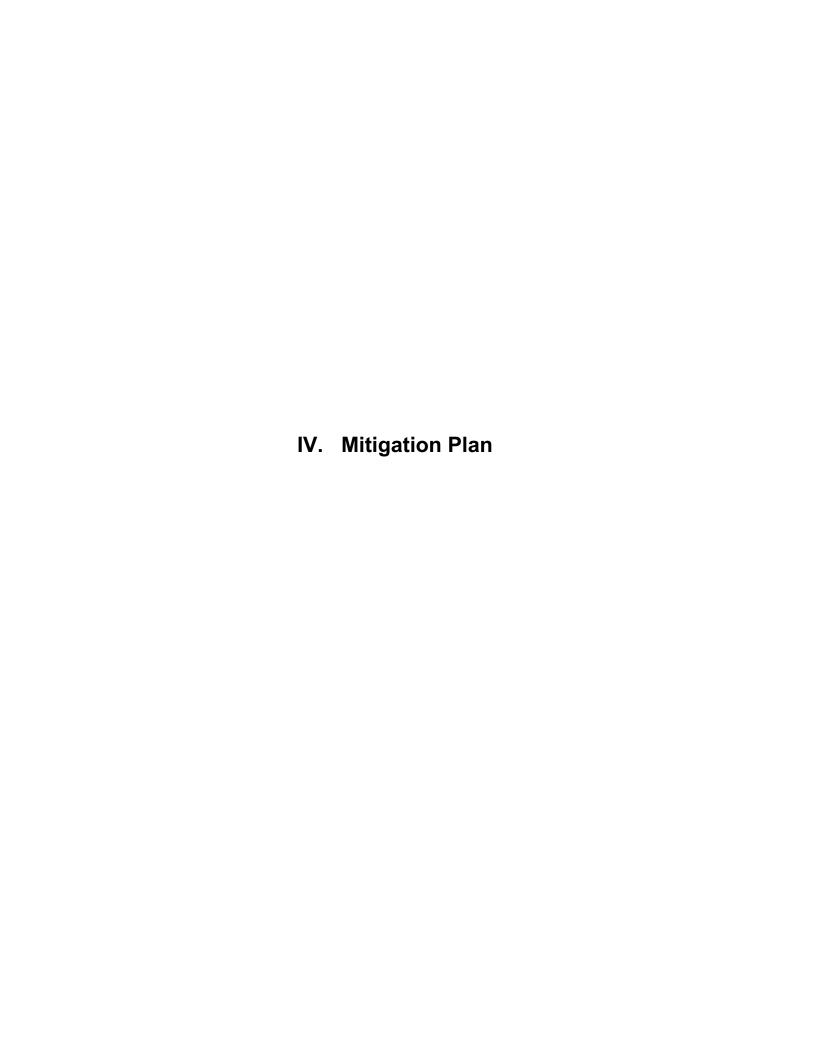
Cowardin Class: Riverine Stream Flow: Ephemeral Wetlands: N/A acres. Cowardin Class: N/A

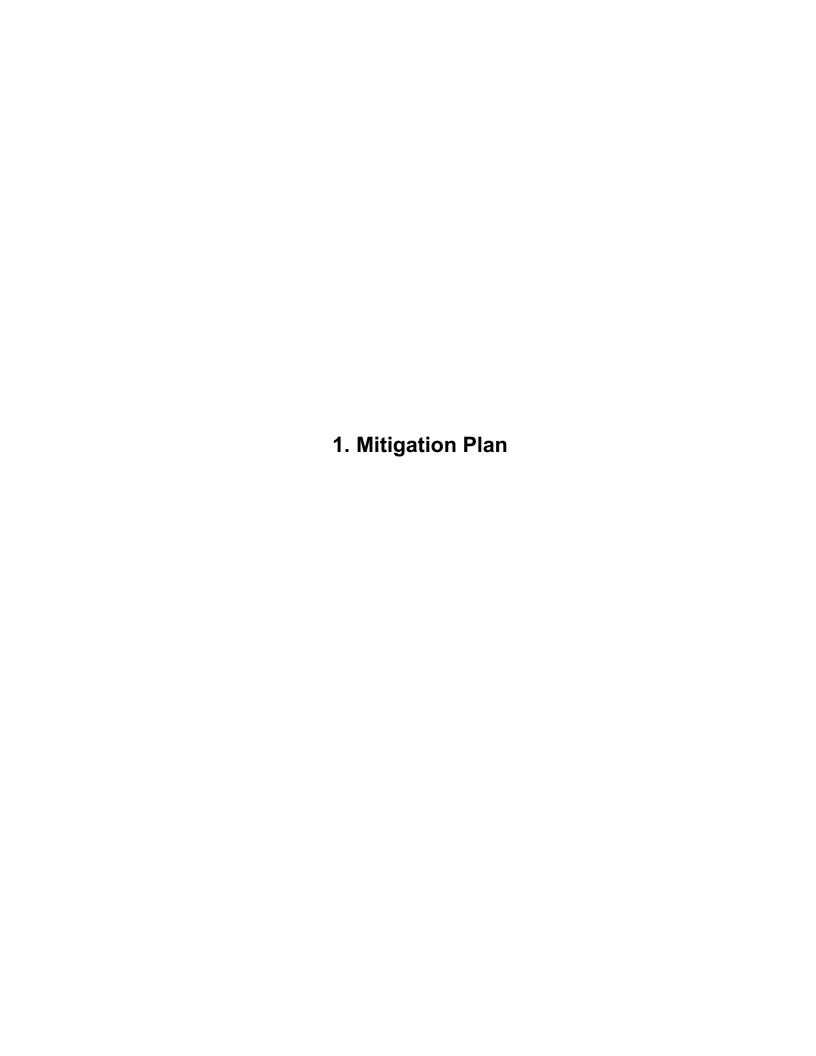
Name of any water bodies on the site that have been identified as Section 10 waters:

Tidal: N/A Non-Tidal: N/A

- E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 - Office (Desk) Determination. Date: 01/12/2009
 - | Field Determination. Date(s): 05/27/2008, 06/19/2008, 08/13/2008
- 1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party


- 1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.
- 2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable. This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:


SUPPORTING DATA. Data reviewed for p	
 checked items should be included in case 	
requested, appropriately reference source	
applicant/consultant:Attached: Site Locat	ion Map, Jurisdictional Waters of the
US Map.	
□ Data sheets prepared/submitted by or	on behalf of the
applicant/consultant. Attached: RBP data	sheets
Office concurs with data sheets/de	ineation report.
Office does not concur with data sh	eets/delineation report.
☐ Data sheets prepared by the Corps:	
Corps navigable waters' study:	
U.S. Geological Survey Hydrologic Atl	as:
	3 and 12 digit HUC maps.
	•
U.S. Geological Survey map(s). Cite s	cale & quad flame. 1.24,000,
Fallsburg Quad. National Becourage Consoniation	on Convince Coil Curvoy
☑ USDA Natural Resources Conservatio	
Citation:USDA and NRCS Soils Report fo	Lawrence and Martin Counties,
KY. Survey on 12/18/2007.	
☐ National wetlands inventory map(s). (Cite name:
☐ State/Local wetland inventory map(s):	
	. KY Community # 210258.
Revised: June 18, 1990.	•
☐ 100-year Floodplain Elevation is:	(National Geodectic Vertical Datum
of 1929)	(National Goodotto Voltical Datain
☐ Photographs: ☐ Aerial (Name & Date	\·National Security Aerial
Photography fsa_n19e_101 and fsa_n20e	•
	tached: Photo Log (photos taken by
Stantec on 05/27/2008, 06/19/2008, 08/13	
☐ Previous determination(s). File no. an	d date of response letter:
Other information (please specify):	
	I I di Combana
IMPORTANT NOTE: The information recor	
necessarily been verified by the Corps and later jurisdictional determinations.	a snould not be relied upon for
later jurisdictional determinations.	
	XX10V
Signature and date of	Signature and date of
•	person requesting preliminary JD
Regulatory Project Manager	(REQUIRED, unless obtaining
(REQUIRED)	· · · · · · · · · · · · · · · · · · ·
	the signature is impracticable)


SAMPLE

Site number	Latitude	Longitude	Cowardin Class	Estimated amount of aquatic resource in review area	Class of aquatic resource
Trib1A	38.2270°N	82.7470°W	Riverine	371 linear feet/ 0.03 acre	Non-section 10 – non-wetland
Trib2-R1	38.2244°N	82.7507°W	Riverine	661 linear feet/ 0.05 acre	Non-section 10 – non-wetland

3. Jurisdictional Waters of the United States Map

MITIGATION PLAN REPORT

East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

Prepared for:

Kentucky Department of Fish and Wildlife Resources

Stantec

MITIGATION PLAN REPORT

Table of Contents

1.0	BASELINE INFORMATION	
1.1	SUMMARY AND PURPOSE	
1.2	DETAILED LOCATION INFORMATION	
1.3	RELATIVE GEOGRAPHIC LOCATION	
1.4	SURROUNDING LAND USE	4
1.5	STREAM CLASSIFICATION	4
1.6	EXISTING CONDITIONS	
1.7	FIELD OBSERVATIONS	6
1.8	CLIMATE	
1.9	WATER QUALITY	
1.10	FUNCTIONAL ASSESSMENT TOOL	7
1.11	AERIAL PHOTOGRAPHY	
1.12	USDA/NRCS LAWRENCE COUNTY SOIL SURVEY SHEET FOR SITE	
1.13	RESPONSIBLE PARTIES	
1.14	PROPOSED MITIGATION SITE	
2.0	GOALS AND OBJECTIVES	
2.1	FUNCTION AND VALUES	11
2.2	FUNCTIONAL REPLACEMENT	12
2.3	EXPECTED MITIGATION CREDITS	
3.0	MITIGATION DESIGN AND PLAN IMPLEMENTATION	
3.1	CONSTRUCTION SCHEDULE AND OBSERVATION	16
3.2	SITE PREPARATION	17
3.3	AS-BUILT CONDITIONS	17
3.4	FINANCIAL ASSURANCES	
4.0	SUCCESS CRITERIA	
4.1	GEOMORPHOLOGY CRITERIA	18
4.2	HABITAT CRITERIA:	18
4.3	VEGETATION CRITERIA:	18
4.4	HOW SUCCESS CRITERIA SUPPORT THE GOALS AND OBJECTIVES	19
5.0	MONITORING	20
5.1	MONITORING SCHEDULE	
5.2	METHODOLOGY FOR MEASUREMENT	
	5.2.1 Geomorphology	20
	5.2.2 Habitat	
	5.2.3 Vegetation	
5.3	MONITORING REPORTS	23

MITIGATION PLAN REPORT

Table of Contents

5.4	RELEASE FROM MONITORING	23
6.0	CONTINGENCY PLAN	24
6.1	POTENTIAL MITIGATION CHALLENGES	24
6.2	CORRECTING DEFICIENCIES & PRE-AUTHORIZATION	24

APPENDICES

Appendix A – Maps

Appendix B – Existing Geomorphic Data

Appendix C - Photo Log and RBP

Appendix D – Reference Reach

Appendix E – Credits Table

Appendix F - NCD Data

Appendix G – Design Plans

Appendix H – Success Criteria

1.0 Baseline Information

1.1 SUMMARY AND PURPOSE

The project site is located in Lawrence County, Kentucky (see **Appendix A**) near the City of Louisa. The project is being completed through funding provided by the Kentucky Department of Fish and Wildlife Resources (KDFWR) In-Lieu Fee Program. The mitigation area consists of stream reaches along East Fork Little Sandy River, Little East Fork, and two headwater tributaries of East Fork Little Sandy River. The East Fork Little Sandy Stream Restoration Project has been divided into 10 reaches, as illustrated in **Appendix A**.

This project entails the restoration and enhancement of approximately 12,757 feet of stream. The proposed activity consists of the relocation of 9,511 feet of new stream channel within the project area. Steps will be taken to maintain channel grade, provide bank protection, and improve habitat within the new channel. Restoration activities include the relocation of some stream segments; the installation of in-stream structures that provide and enhance aquatic habitat, as well as provide erosion and grade control; reshaping of the existing channel for stability; and the planting of riparian vegetation to improve stability along the banks.

1.2 DETAILED LOCATION INFORMATION

From Louisville, take I-64 East to Exit 172; go south on Route 7 to Grayson. At Grayson, go south on Route 1 for approximately 9.5 miles to Willard. After Willard, turn left onto Route 1496. Travel approximately 8.7 miles on Route 1496 to the site. The majority of the project is located on Sunset Ranch.

Baseline Information March 2009

1.3 RELATIVE GEOGRAPHIC LOCATION

The project is located within the Eastern Coalfield physiographic region within the Little Sandy River Watershed (HUC 050901414) (See **Figure 1.1**). This region is characterized by rugged mountains and is known for its abundance of coal.

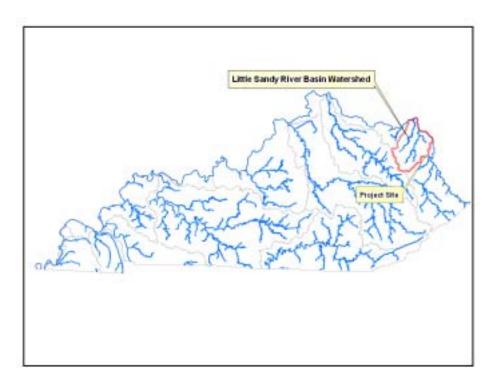


Figure 1.1 USGS Geographic Location within the Sandy River Watershed

1.4 SURROUNDING LAND USE

Land usage within the project area buffer is predominately grasslands with some mixed forest areas. The grasslands found along the banks of East Fork Little Sandy River, the Little East Fork, and Tributary 2 are mowed or cut for hay two to three times a year. The grasslands found on the lower one-third (1/3) of Tributary 1 are mowed regularly with mixed forest lands found on the remaining upper most part of the tributary.

1.5 STREAM CLASSIFICATION

The existing Rosgen stream types within the project area vary. **Table 1.1** summarizes the dimensions and stream classification for each existing reach of the project

Baseline Information March 2009

Table 1.1 Stream Classification for East Fork Little Sandy Stream Restoration Project

Stream	Reach	Cross-section		D _{BKF} (ft)	W/D		Level II Reach Classification
East Fork Little Sandy River	Reach 1	XS-3 Riffle	22.76	2.13	10.69	4.39	E5
Little East	Reach 1	XS-504+00	16.02	1.13	14.18	2.27	C4
Fork	Reach 2	XS-1 Riffle	12.82	1.43	8.97	11.7	E4
	Reach 1	XS 301+50	6.0	0.53	11.32	3.03	B4
Tributary 1	Reach 2	XS-2 STA 187.5	7.84	0.61	12.85	1.86	B4c
	Reach 3	XS 329+00	8.07	0.74	10.91	4.58	E4
Tributary 2	Reach 2	XS 207+50	6.2	0.53	11.7	5.64	E4b

Profiles, sections and detailed data for the surveyed cross-sections on East Fork Little Sandy are included in **Appendix B**.

1.6 EXISTING CONDITIONS

East Fork Little Sandy River and its tributaries are headwaters to the Little Sandy River. The project involves approximately 12,757 feet of 1st, 2nd, and 3rd order streams. Streams located within the project area have been impaired from filling within the floodplain, channel relocation, and agricultural practices. Channel degradation is occurring, resulting in unstable banks, increased stream erosion and migrating channels. Both right and left banks are unstable throughout the project.

Stream habitat is poor throughout the project site. Habitat assessment scores indicate that the affected stream segments have diminished aquatic habitat functions. The upper section of East Fork Little Sandy River flows through a small wooded section and agricultural fields with sparse riparian protection in some places. The channel has been relocated against the toe of the hill causing sloughing of the banks. This section of stream channel is entrenched with eroding banks throughout; however, the channel has a good meander pattern. The middle and lower portion of East Fork Little Sandy River flows through large agricultural fields. Much of this reach has been straightened and relocated against State Route 1496. Both right and left banks are steep and unstable. Further downstream, the channel has two tight-contorted meanders, causing severe bank erosion.

Little East Fork converges with the East Fork Little Sandy River at the downstream end of the project site, just above a bridge crossing. The upstream portion of the affected stream channel along Little East Fork has been relocated against the toe of the adjacent hill causing sloughing.

MITIGATION PLAN REPORT

Baseline Information March 2009

The channel is entrenched with sparse riparian protection throughout. However, the right descending side of the upper section is wooded.

The majority of the channel of Tributary 1 is entrenched from down-cutting. The upper section has been relocated against an access road causing erosion in areas. This section of stream is in the widening phase of channel evolution and bankfull benches have formed in some places. The lower portion of Tributary 1 is straightened with no riparian zone as it flows through pastures.

Tributary 2 is located at the upstream end of the project site where it flows into the East Fork Little Sandy River. In the lower section of the tributary, the channel is entrenched and straightened. There are few trees on the lower portion of Tributary 2.

1.7 FIELD OBSERVATIONS

Each of the streams on the East Fork Little Sandy Stream Restoration Project was surveyed to collect data necessary for the classification of the existing stream types. Pebble counts were conducted to characterize bed materials and to estimate stream roughness. Samples were collected from bars for sieve analysis to characterize depositional materials for sediment transport competency calculations.

The existing stream profile, cross-sections, particle size analyses, and measured bankfull parameters for East Fork Little Sandy Stream Restoration Project are presented in **Appendix B**.

1.8 CLIMATE

Table 1.2 shows climate data for the East Fork Little Sandy River watershed. Climate data is not available at this time for Lawrence County, Kentucky and has been extrapolated with data from nearby Boyd County. Climate data was obtained from the Natural Resources Conservation Service (NRCS) website. **Table 1.2** includes the average and maximum temperature and precipitation values for Ashland, Kentucky. The annual average temperature is 53.2° F and the total annual precipitation is 42.61 inches. **Table 1.3** provides growing season dates and probabilities for the site based on the data from Ashland.

Baseline Information March 2009

Table 1.2 Average Precipitation

	Tei	mperature (∀ F)	Precipitation (inches)				
				30% Chance will have				
Month	Average Daily Max	Average Daily Min	Average	Average	Less Than	More Than	Average # of days with 0.1 or More	Average
January	41.4	18.5	29.9	3.12	2.11	3.74	7	3.0
February	46.6	20.9	33.8	3.05	2.03	3.60	7	2.0
March	57.0	28.9	43.0	3.76	2.48	4.27	8	1.8
April	68.0	36.6	52.3	3.33	2.32	3.98	8	0.0
May	76.9	46.5	61.7	4.47	3.23	5.38	8	0.0
June	84.3	56.2	70.3	4.02	3.02	4.91	8	0.0
July	88.0	61.1	74.6	4.66	3.40	5.69	7	0.0
August	86.6	59.3	72.9	3.71	2.75	4.36	6	0.0
September	80.2	52.3	66.2	2.83	1.76	3.54	5	0.0
October	69.5	40.3	54.9	2.84	1.89	3.43	5	0.0
November	57.0	30.7	43.8	3.43	2.41	4.31	7	0.1
December	46.1	23.3	34.7	3.38	2.32	3.87	7	1.2
ANNUAL					37.48	44.74		
AVERAGE	66.8	39.5	53.2					
TOTAL				42.61			83	8.1

Table 1.3 Growing Season Dates for Ashland, Kentucky

	Temperature					
	24° F or Higher	28° F or Higher	32° F or Higher			
Probability	Beginning	and Ending Growing Seas	son Length			
	4/6 to 11/6	4/18 to 10/22	5/1 to 10/11			
50% *	213 days	187 days	163 days			
	3/31 to 11/12	4/13 to 10/27	4/27 to 10/16			
70% *	225 days	197 days	172 days			
*Percent chance of the growing	season occurring between the Be	ginning and Ending dates.				

1.9 WATER QUALITY

The project site is within the Eastern Coalfield Physiographic region. The conductivity measured near the end of the project site was 203 µS/cm.

1.10 FUNCTIONAL ASSESSMENT TOOL

The USEPA Rapid Bioassessment Protocol (RBP) for high gradient streams, was used to assess stream habitat quality for the project site. East Fork Little Sandy River is located within

MITIGATION PLAN REPORT

Baseline Information March 2009

the Mountain (MT) bioregion, which includes all river systems (Big Sandy, Cumberland, Kentucky, Licking, Little Sandy minor tributaries of the Ohio River) within the boundaries of the Central Appalachian Ecoregions (69). All reaches of East Fork Little Sandy River received a poor habitat quality rating (**Table 1.4**). Selected photographs of the existing stream reaches and detailed data for the RBP assessments can be found in **Appendix C**.

Table 1.4 Habitat Quality Scale of Kentucky Streams by Bioregion as classified by RBP values¹

	Stream	RBP Score/Stream Size		
Bioregion	Habitat Quality	Headwater (<5.0 mi. ²)	Wadeable (>5.0 mi. ²)	
	Excellent	Ø 160	Ø 160	
Mountain	Average	117-159	117-159	
	Poor	Ω 116	Ω 116	

Following Eastern Kentucky Protocol, the initial and predicted RBP's and Conductivity were used to obtain the Ecological Integrity Indices (EII). From the EII, stream type ratio (according to ephemeral, intermittent, or perennial) and the project length, the overall credit/debit was determined.

Reference reaches used for the natural channel design for each project reach are given in **Table 1.5**.

Table 1.5 Reference Reaches

Project Reach	Reference Reach	Stream Type	Location
East Fork Little Sandy	East Fork Little Sandy Restored Reach	B5c	Lawrence County, Kentucky
Little East Fork Reach 1	Hyatt's Fork	C4	Pulaski County, Kentucky
Tributary 1, Reach 1, Reach 2	Flagg Spring Creek	B4c	Campbell County, Kentucky
Tributary 1, Reach 3	Hyatt's Fork	C4	Pulaski County, Kentucky
Tributary 2, Reach 2	Lower Brier Creek	C4b	Adair County, Kentucky

Baseline Information March 2009

1.11 AERIAL PHOTOGRAPHY

Figure 1.4 was obtained from aerial photography provided by the National Agriculture Imagery Program. The photograph was taken in the spring of 2006. The blue lines show the project extents for East Fork Little Sandy Stream Restoration Project.

Figure 1.4 Aerial Photography of East Fork Little Sandy Stream Restoration Project

1.12 USDA/NRCS LAWRENCE COUNTY SOIL SURVEY SHEET FOR SITE

The soil survey map in the vicinity of the project site is shown in **Appendix A**. The map was obtained from http://kgsweb.uky.edu/download/geology/soils/soilspick.htm. Soil types and descriptions of the soils found in the site area are given in **Table 1.6**. Holly silt loam, found along the Little East Fork (Ho) is the only hydric soil located within the project area containing 90% hydric soils. The dominant soil in the vicinity of the site is the Hayter-Grigsby complex.

Baseline Information March 2009

Table 1.6 Soil Descriptions

Soil	
Symbol	Soil Description
HaC	Hayter-Grigsby complex, 2 to 15 percent slopes
VaF2	Vandalia-Beech complex, 20 to 60 percent slopes
UpD	Upshur-Rarden complex, 12 to 25 percent slopes
Но	Holly silt loam, frequently flooded
HaC	Hayter-Grigsby complex, 2 to 15 percent slopes

1.13 RESPONSIBLE PARTIES

The Kentucky Department of Fish and Wildlife Resources (KDFWR) is the responsible party for this stream restoration project. The contact person at KDFWR is Benjamin Kinman. Permit preparation was completed by Stantec Consulting Services Inc. and the contact person is Stephen D. Hall. Property owners and point of contact information are listed in **Table 1.7**.

Table 1.7 Contact Information

	Adjoining Property Owners						
Owner	Address	City, State	Zip Code	Phone			
Mr. Jack Holcomb	Sunset Ranch 800 Hwy 1496	Louisa, KY	41230	606-686-1100			
Mr. Elmer Lucas	Route 1, Box 129	Salt Rock, WV	25559	304-736-9707			
Mr. James Metz	513 Little East Fork Rd	Louisa, KY	41230	606-686-2793			
Mr. Bill Morehead	PO Box 3222	Louisa, KY	41230	606-686-9267			
Mr. Carl Kirk	345 Little East Fork Rd	Louisa, KY	41230	606-686-3369			
Project Contacts							
Name	Name Organization Address		Phone				
	KY Department of Fish	#1 Sportsma	an's Lane	(502) 564-3440			

Project Contacts						
Name	Organization	Address	Phone			
Benjamin Kinman	KY Department of Fish	#1 Sportsman's Lane	(502) 564-3440			
	and Wildlife Resources	Frankfort, KY 40601	Ext:4466			
Stephen D. Hall	Stantec Consulting	350 Missouri Ave, Ste 100				
Stephen D. Hall	Services Inc.	Jeffersonville, IN 47130	(812) 285-4060			

1.14 PROPOSED MITIGATION SITE

The project reach was identified by the KDFWR as a potential mitigation site for impacted streams within the Little Sandy River Watershed (HUC06040006). In-lieu fees paid to mitigate stream losses in the watershed are being used to design and construct the project.

The site was selected because its existing conditions and potential for improvement. Stream reaches on the East Fork Little Sandy Restoration Project lack aquatic habitat, riparian

MITIGATION PLAN REPORT

Goals and Objectives March 2009

vegetation, proper stream form and overall stability. Most of the stream reaches are incised and lack connection with the floodplain.

The proposed mitigation project will allow access to the floodplain, prevent further headcutting in stream reaches, reduce erosion, and improve aquatic and riparian habitat along the project reach. Details of the proposed design plans are included in **Section 3.0** and **Appendix G**.

The mitigation site is protected by a conservation easement between the landowners and the KDFWR.

2.0 Goals and Objectives

This project is being constructed by the Kentucky Department of Fish and Wildlife Resources, with funding from the Kentucky In-Lieu Fee Program. The purpose of the program is to utilize fees paid for unmitigated stream impacts to provide mitigation by improving and restoring the function and value of streams in the Commonwealth. The restoration plan for the project has been designed to improve the functions and values of the affected stream reaches and is presented in **Section 3.0**.

2.1 FUNCTION AND VALUES

The function of streams includes physical, chemical, and biological processes that support selfsustaining reaches which provide healthy habitats for aquatic and riparian plant and animal species. Higher functioning streams are valuable fisheries, have better water quality, and improved wildlife populations and diversity.

In its existing state, the project reach on East Fork Little Sandy is characterized by the lack of effective riparian vegetation, poor floodplain access, and unstable banks. The lack of shading by riparian vegetation along reaches causes elevated water temperatures and reduces dissolved oxygen levels.

Unstable banks are easily eroded and can be a significant source of sediment that impairs fish and macroinvertebrate communities. Bank instability is generally caused by the removal of trees and woody vegetation from the stream banks. Roots of trees and vegetative cover act to reinforce soils and bind the soil mass. In addition to stabilizing and shading stream banks, leaf litter from trees and woody vegetation provides a food source and habitat for many macroinvertebrates in the stream.

For this project only, abiotic factors of the Eastern KY Stream Assessment Protocol (EKSAP) were needed. Thus, only RBP habitat scores and conductivity were used. The RBP involves components such as riparian width, bank stability, and embeddedness. The existing RBP scores along East Fork Little Sandy and related tributaries and the expected post-construction

MITIGATION PLAN REPORT

Goals and Objectives March 2009

scores (after vegetation establishment) are below in **Table 2.1**. Details of the RBP scores are included in **Appendix C**.

Reach **Pre-Construction Post-Construction** EFLS R1 97 162 LEF R1 81 162 79 _EF R2 140 LEF Trib 65 160 Trib 1 R1 108 163 Trib 1 R2 115 164 Trib 1 R3 162 94 Trib 1A 99 144 Trib 2 R1 94 147 Trib 2 R2 86 163

Table 2.1 RBP Scores

2.2 FUNCTIONAL REPLACEMENT

The purpose of this project is to mitigate stream loss in the Big Sandy River watershed. Stream design for this project was conducted using Natural Channel Design techniques, which employs a holistic approach to stream restoration whereby the creation of habitat and preservation of stream function is emphasized equally with physical stability. Riparian corridor establishment is also a component of natural channel design projects as the presence of tree root structures will enhance the stability of the new stream channel. In addition, tree vegetation provides shade and ecological enhancements to the stream ecosystem.

2.3 EXPECTED MITIGATION CREDITS

The expected mitigation credits are based on the success criteria for streams and wetlands. Success Criteria for this project is presented in **Section 4.0**. These criteria are based on expected values at each of the five monitoring years. Due to the location of the projects location with in the Eastern Coalfields region of Kentucky, mitigation credits have been calculated using the EKSAP developed by the United States Army Cops of Engineers (USACE). A summary of the expected mitigation credits for the East Fork Little Sandy Stream Restoration Project is presented in **Table 2.2**, as discussed below. Stream credit calculations are presented in **Appendix E**.

MITIGATION PLAN REPORT

Mitigation Design and Plan Implementation March 2009

Table 2.2 Mitigation Credits

	Net
Reach	Credits
EFLS R1	2,842
LEF R1	1,018
LEF R2	477
LEF Trib	94
Trib 1 R1	216
Trib 1 R2	482
Trib 1 R3	263
Trib 1A	53
Trib 2 R1	86
Trib 2 R2	126
TOTAL	5,656

3.0 Mitigation Design and Plan Implementation

The proposed design plan is included in **Appendix G**. It includes the following components:

- ∉ Relocation of approximately 9,511 linear feet of stream on East Fork Little Sandy and related tributaries, restoration and enhancements of approximately 12,757 total linear feet of stream on the entire project.
- € Construction of log vane/rootwad combinations, constructed riffles, and rock cross vanes in East Fork Little Sandy to increase bank stability and aquatic habitat.
- ∉ Rock and log step pool construction to provide gradual grade control
- ∉ Tree planting in the riparian corridor

Structures designed to increase the stability of banks as well as provide valuable in-stream habitat will be constructed in the reaches of East Fork Little Sandy River. Log vane/rootwad combinations will promote the formation of pools, provide diverse aquatic habitat, and protect the outside meander bends of the reaches. Cross vanes will be used to protect banks, provide grade control, direct flow to the center of the stream while maintaining stream power, and maintain scour pool habitat.

The riparian corridor will be seeded and planted along East Fork Little Sandy. Two planting and seeding zones have been established along the reaches. Zone 1 includes areas that are at or below the bankfull or flood prone elevation. Zone 2 covers areas above the flood prone area.

MITIGATION PLAN REPORT

Mitigation Design and Plan Implementation March 2009

Planting plans showing planting limits are included in **Appendix G**. **Table 3.1** contains a listing of plants proposed for the revegetation areas. There are two zones, as mentioned above.

Only native plants will be used in the riparian planting zones. Seeds and plants were selected based on their hardiness in the Eastern Coalfields region, ease of stand establishment, and their ability to provide food and refuge for wildlife. Planting and seeding schedules for Zones 1 and 2 are provided in **Table 3.1**.

Current land uses and overall stream instability contribute significant volumes of sediment to the stream from bank erosion. The channel design and hydraulic structures will promote the movement of sediment through the stream reach. This will prevent silt disposition in the stream bed that can degrade aquatic habitats. The mitigation plan does not include provisions should the development of the watershed result in base flow losses.

Seeding Rates for Permanent Ground Cover: The seeding rates for permanent ground cover are shown in **Table 3.1** below.

Table 3.1 Permanent Planting and Seeding Mixtures and Rates

ZONE 1 – Bankfull Bench					
Common Name	Species Name	Stems per acre	Frequency (%)		
SHRUBS					
Buttonbush	Cephalanthus occidentalis	72	20		
Silky Dogwood	Cornus amomum	72	20		
Common Alder	Alnus serrulata	72	20		
Elderberry	Sambucus canadensis	72	20		
Arrowwood	Viburnum dentatum	72	20		
	Total	360	100		
TREES					
Black Willow	Salix nigra	30	15		
Cottonwood	Populus deltoides	30	15		
Green Ash	Fraxinus pennsylvanica	30	15		
Pin Oak	Quercus palustris	40	20		
Swamp White Oak	Quercus bicolor	40	20		
River Birch	Betula nigra	30	15		
	Total	200	100		

MITIGATION PLAN REPORT

Mitigation Design and Plan Implementation March 2009

ZONE 2 – Above Bankfull Bench					
Common Name	Species Name	Stems per acre	Frequency (%)		
SHRUBS					
Black Haw	Viburnum prunifolium	72	20		
Witch-hazel	Hamamelis virginiana	72	20		
Redbud	Cercis canadensis	72	20		
Spicebush	Lindera benzoin	72	20		
Arrowwood	Viburnum dentatum	72	20		
	Total	360	100		
TREES					
Flowering Dogwood	Cornus florida	24	10		
Sugar Maple	Acer saccharum	24	10		
Sweet gum	Liquidambar styraciflua	24	10		
Persimmon	Diospyros virginiana	24	10		
White Ash	Fraxinus americana	24	10		
White Oak	Quercus alba	48	20		
Red Oak	Quercus rubra	48	20		
Black Walnut	Juglans nigra	24	10		
	Total	240	100		
Permane	nt Ground Cover – Zone	s 1 & 2			
Common Name	Species Name	Pounds of PLS per acre	Frequency (%)		
GRASSES					
Big Bluestem Grass	Andropogon gerrardii	10	20		
Little Bluestem Grass	Andropogon scoparius	10	20		
Fowl Mannagrass	Glyceria striata	5	10		
Indian Grass	Sorghastrum nutans	5	10		
Switchgrass	Panicum virgatum	10	20		
Virginia Wild Rye	Elymus virginicus	5	10		
Tioga Deertongue	Panicum clandestinum	5	10		
Total 50 100					

MITIGATION PLAN REPORT

Mitigation Design and Plan Implementation March 2009

SEDGE & FORB			
Fox Sedge	Carex vulpinoidea	1.0	10
Frank's Sedge	Carex frankii	1.0	10
Soft Rush	Juncus effusus	1.0	10
Black-Eyed Susan	Rudbeckia hirta	2.0	20
New England Aster	Aster novae-angliae	1.0	10
	Solidago = (Euthamia)		
Grass-leaved Goldenrod	graminifolia	1.0	10
Tall Goldenrod	Solidago altissima	1.0	10
Bonset	Eupatorium perfoliatum	0.5	5
Beggar Ticks	Bidens frondosa	1.5	15
	Total	10	100

Nursery Stock Units – All shrubs and trees to be bare root.

Spacing Pattern – Tree and shrub species to be distributed in a random order.

PLS = Minimum Pure Live Seed Percentage.

All seed to be broadcast and raked into soil.

Live Stakes: Live stakes may be substituted (species for species) for appropriate trees/shrub seedlings in **Zone 1**, if desired. Those species that do well as live stakes in **Zone 1** include silky dogwood, black willow, and elderberry. Live stakes need to be driven into the ground at a depth of approximately 60% to 70% of their length, if possible. Spacing of live stakes (as approved by engineer) will be consistent with planting Zone 1 spacing.

Bare Root Seedling Sizes: Seedling sizes will vary by species. The contractor is to plant seedlings of adequate size for each species such that the seedlings will be viable under expected growing conditions. The contractor is ultimately responsible for the success of seedling plantings for one year after construction, under the terms of the project warranty. If species can not be obtained as bare root seedlings, then the contractor may use the smallest container stock available.

3.1 CONSTRUCTION SCHEDULE AND OBSERVATION

The construction schedule will be set by the contractor. Provisions are included in the design drawings regarding appropriate planting schedule for items that require planting during the dormant season. The surveying portion of yearly monitoring will likely take place in the absence of leaf cover. Photo documentation, however, will take place during the growing season and during dormancy.

Spacing – Trees and shrubs to be spaced on average on a 9ft x 9ft grid.

MITIGATION PLAN REPORT

Mitigation Design and Plan Implementation March 2009

Construction observation will be provided by Stantec. A field engineer will be available throughout the construction process and will assist the contractor with the construction of the East Fork Little Sandy Stream Restoration Project.

3.2 SITE PREPARATION

Preparation of the site for construction will include the installation of stabilized construction entrances, silt fence, and sediment controls shown on the erosion and sediment control plan. Trees not to be disturbed will be identified and protected with orange barrier fencing.

Trees and vegetation will be cleared from areas where bankfull benches will be constructed in a phased process. Trees suitable for the construction of rootwad and habitat structures will be salvaged. The staging area and stockpile areas for construction materials will be established.

Spoil disposal areas will be identified adjacent to the project area. These areas will be cleared and grubbed. Topsoil will be removed from the spoil disposal areas and stockpiled for use in topsoil replacement.

Relocation reaches will be constructed in the dry while stream flow is maintained through the existing channel. Fill will then be placed to cut off stream flow to the abandoned channel reaches upon completion of the relocated stream.

The riparian corridor will be seeded and planted along the project site. Construction notes include directions for the contractor to minimize compaction in the planting zone or, if applicable, disk the soil prior to planting seeds and plant stock.

3.3 AS-BUILT CONDITIONS

Within six weeks of the completion of the mitigation project, KDFWR will obtain an as-built survey of the site. The as-built report will be submitted with the Year 1 monitoring report to the USACE describing the as-built status of the project, including initial planting list and plan, updated credit/debit tables, narrative, and a monitoring schedule. Stream dimensions, plan, and profile information will be collected during the as-built survey. Specific data collected during the as-built survey will include plan form measurements, longitudinal profiles throughout the mitigation site, cross-sections, monument locations, RBP scores, revised credit/debit table, and photo documentation. A brief narrative describing any deviation from the approved mitigation plan will accompany the as-built plans and report. Maintenance items will be addressed on an as-needed and scheduled basis. The mitigation site will be identified with permanent signs while monitoring locations will be marked with permanent monuments.

3.4 FINANCIAL ASSURANCES

Kentucky Department of Fish and Wildlife Resources will allocate any necessary monies for implementation and maintenance of the project.

Success Criteria March 2009

4.0 Success Criteria

Project specific success criteria are established and presented in **Appendix H**. The success criteria are divided into three categories; geomorphology, vegetation, and habitat value. Geomorphology and vegetation success criteria establish a minimum performance standard for the implementation of the restoration project design. In contrast, the habitat success criteria establish a minimum performance standard of the restoration project goal. The monitoring methods described in **Section 5.0** will collect the data necessary to evaluate the project against the success criteria. The success criteria presented in **Appendix H** have annual targets up to the fifth year. The sections below summarize the success criteria that are to be obtained at the end of the five-year monitoring period.

4.1 GEOMORPHOLOGY CRITERIA

- ∉ Riffles:
 - Maintain Bankfull dimensions to within 50% of design criteria.
- ∉ Pools:
 - o Maintain Bankfull dimensions to within 50% of design criteria.
- **Expected number of cumulative bankfull events:**
 - Three after five years.
- € Channel, Banks, and Structures:
 - No significant scour, sedimentation, erosion, or sloughing of channel and banks; and
 - Structure function and integrity is maintained.

4.2 HABITAT CRITERIA:

- **∉** Habitat Value:
 - Maintain a minimum RBP score of 146.

4.3 **VEGETATION CRITERIA:**

- ∉ Woody Vegetation:
 - Native species to account for a minimum of 300 stems per acre;
 - Native species to account for a minimum of 80% of total stem count;
 - Invasive/exotic species to account for a maximum of 10% of total stem count (invasive/exotic species will not be counted as volunteers); and
 - Any one species to account for a maximum of 25% of total stem count.
- ∉ Herbaceous Vegetation:
 - Vegetation to account for a minimum of 80% of total cover;
 - Native species to account for a minimum of 80% of vegetative cover;

MITIGATION PLAN REPORT

Success Criteria March 2009

- Invasive/exotic species to account for a maximum of 10% of vegetative cover (invasive/exotic species will not be counted as volunteers); and
- o Any one species to account for a maximum of 25% of vegetative cover.
- ∉ Total Plant Species List:
 - Plant species that have been observed at the site.

Exotic/invasive species are those species listed on the Exotic Plants List published by the Kentucky Exotic Pest Plant Council. Listed species will be removed from the mitigation area prior to planting. If these species are present in numbers that exceed the success criteria during monitoring, they will be removed during the monitoring year so that the exotic/invasive species criteria are met.

If the vegetation on this site fails to meet the success criteria and replanting of vegetation is required, the following measures will be taken.

- During Year 1 of monitoring, native stem density numbers may fall below outlined success criteria for vegetation by up to 25% without requiring a re-start of the vegetation monitoring years, **if** the failed areas are replanted to have a total of at least 400 stems/acre (by April of Year 2 monitoring).
- ∉ During Year 2 of monitoring, native stem density numbers may fall below outlined success criteria for vegetation by up to 15% without requiring a re-start of the vegetation monitoring years, if the failed areas are replanted to have a total of at least 400 stems/acre (by April of Year 3 monitoring).
- During Year 3 of monitoring, native stem density numbers may fall below outlined success criteria for vegetation by up to 5% without requiring a re-start of the vegetation monitoring years, if the failed areas are replanted to have a total of at least 400 stems/acre (by April of Year 4 monitoring).
- If native vegetation along the stream site fails to meet the success criteria by any greater percentages (as outlined above) **or** in any later years than monitoring Year 3, negotiations with the USACE will be made prior to remediation of the vegetation and the USACE may require vegetation monitoring of five years minimum to re-start.

4.4 HOW SUCCESS CRITERIA SUPPORT THE GOALS AND OBJECTIVES

Geomorphology, habitat, and vegetation success are all evaluated as part of the RBP scoring. The RBP includes metrics for evaluating the channel stability, fish cover, facet creation and riparian zone as described in the Goals and Objectives section of this document.

MITIGATION PLAN REPORT

Monitoring March 2009

5.0 Monitoring

Monitoring of the site will commence after construction and during the first full growing season. Monitoring will continue for a minimum of five years or until released from monitoring by the USACE. The site will be monitored for the geomorphologic stability of the channel, the growth of riparian vegetation, and the habitat value index of the entire system. In addition, the methods are designed to yield results in a format that is directly comparable to the success criteria outlined in **Section 6.0**.

5.1 MONITORING SCHEDULE

Monitoring of the site will be conducted in accordance with the schedule outlined in **Table 5.1**. Monitoring of habitat value and visual inspection of channel geomorphology will occur once a year with cross-sections being conducted during Year 5 only. Visual inspections of in-stream structures and bank scours can be made during any site visit; however, a comprehensive inspection is scheduled once a year. Vegetation plots will be monitored once each year. Photo monitoring will be conducted twice a year; once at the beginning of the growing season and again towards the end of the growing season. Personnel performing the evaluation will be landscape ecologists, taxonomists, botanists, and civil engineers. It is expected that Stantec will conduct the project monitoring and reporting.

5.2 METHODOLOGY FOR MEASUREMENT

5.2.1 Geomorphology

The most critical channel dimensions for natural channel design are riffle dimensions. Not only are riffle dimensions the basis for stream classification, they also establish the stage of upstream waters (providing grade control). Pool dimensions are second in importance because their morphology impacts the flow characteristics of runs and glides. Pools are typically excavated to varying depths and are made deep where feasible. Runs and glides are transitions between the riffles and pools and may vary to some degree in dimension without detriment to the geomorphologic stability of the riffles and pools. In this design, runs and glides are not specifically dimensioned. The following success measurements will be reported:

Cross-sections: A total of eight cross-section stations will be established and measured during the as-built survey. These stations will also be surveyed during the fifth annual monitoring period.

Table 5.1. Monitoring Schedule.

Company	مرائم والح مؤورا	As-	Year 1	ır 1	Year 2	r 2	Year 3	r 3	Year 4	ır 4	Year 5	r 5
		Built	Early	Late								
	Cross-sections - Riffles and Pools	×									×	
Geomorphology	Grade & Habitat Structure Visual Inspection	×		×		×		×		×		×
	Photograph Restored Reach(s)	×	×	×	×	×	×	×	×	×	×	×
Habitat	RBP (low gradient, habitat)			×		×		×		×		×
	Stem Count - Trees & Shrubs	×		×		×		×		×		×
Vocatation	Percent Cover - Herbaceous Plants	X		×		×		×		×		×
Vegetation	Photograph Riparian Zones	×	×	×	×	×	×	×	×	×	×	X
	Total Plant Species List	×		×		×		×		×		×

Data collected during the Early and Late growing season monitoring events will be reported in the Annual Monitoring Report of that Year. The Annual Monitoring Reports will be submitted to the USACE and Section 401 Water Quality Certification Agency by January 31st of the following NOTE:

ydal.

X Data Collection Completed

1 Data collection will only confirm that the entire area was seeded with approved restoration mix.

StantecMITIGATION PLAN REPORT

Expected Number of Cumulative Bankfull Events: Bankfull event observations can be documented using the following methods:

- ∉ Rack/raft line observations;
- ∉ Direct observations; and
- ∉ Use of a local gage/collaborative source to make observations.

Assuming a bankfull event is equivalent to an event with a 1.2- to 1.5-YR return period, the probability of bankfull flow being equaled or exceeded in any year is 67 to 83%. Over the five-year monitoring period 3 to 4 bankfull events can be expected.

Grade & Habitat Structure Visual Inspection: A visual survey of the restored reach will be conducted once a year. The condition of each in-stream structure and the condition of channel bank will be inspected. Casual observations of in-stream structures and the condition of the channel bank can be made during any site visit.

Photograph Restored Reach(s): The quantity and location of photographic documentation stations will be established during the as-built survey. Stations will be located at strategic points where upstream and downstream views include images of critical structures and channel morphology.

5.2.2 Habitat

Habitat value will be measured using the RBP developed by the USEPA (USEPA, 1999). According to the *Standard Methods for Assessing Biological Integrity of Surface Waters in Kentucky* (February, 2008, Revision 3), Trammel Creek is within the Pennyroyal Bioregion and will require a minimum RBP value of 146 to be considered excellent habitat quality (see **Section 1.10** and **Table 1.4**).

RBP Stations: The quantity and location of RBP stations will be established during the as-built survey. However; since there are two basic restoration treatments (channel restoration and Bankfull bench only), a minimum of two RBP stations will be established. In general, RBP stations will be located where the upstream and downstream conditions at each station are typical of the reach being monitored.

5.2.3 Vegetation

Vegetation will be monitored through a combination of stem count measurements for planted and volunteer woody species and percent coverage measurements for herbaceous species. Stem counts will be conducted in each planting zone area via belt-transect method. Percent coverage measurements will be conducted in each planting zone area via quadrat (plot-subplot) method. The size, orientation, and number of sampling plots and transects will be established in the field during the as-built survey and included in the as-built report.

StantecMITIGATION PLAN REPORT

Monitoring March 2009

Stem Counts (Woody Vegetation): Stem counts are proposed to assess woody stem densities at the site. Stem counts will be conducted along belt-transects that will be two (2) meters wide and have variable lengths in Zones 1 and 2. Woody Belt-transects will be field-measured using an open reel measuring tape, and marked by survey stakes. Observed woody species, including planted and volunteer specimens, will be counted.

Percent Cover (Herbaceous Vegetation): Percent coverage measurements are proposed to assess herbaceous species composition at the site. Percent coverage measurements will be conducted within sample plots of variable dimensions in both planting zones. Sample plots will be established in the field using open reel measuring tapes, and will be marked by survey stakes. Each sampling plot will have a series of one meter square sub-plots called quadrats. The percent cover of herbaceous vegetation, by species, and bare ground will be measured within these quadrats.

Photograph Riparian Vegetation (Vegetation Plots): Each belt-transect and sampling plot will be photographed during each monitoring event. The location and orientation of the photographs will be located on the annual reports.

5.3 MONITORING REPORTS

Annual monitoring reports, consistent with RGL-08-03 (USACE) and will be submitted to KDOW and USACE by January 30th of the year following each monitoring period. Monitoring reports will include the updated debit/credit ledger, success criteria measurements, photographs, and maps of monitoring locations.

5.4 RELEASE FROM MONITORING

Once the project has been monitored for a minimum of five years and has met the success criteria, KDFWR will request, in writing, release from monitoring. The request will include the following:

- ∉ Final Monitoring Report, including an evaluation of project success and final success criteria metrics;
- ∉ Final credits based on project success; and
- ∮ Jurisdictional Determinations for any created Waters of the U.S.

The USACE shall conduct a final site visit and notify KDFWR in writing whether release form monitoring is deemed appropriate or what additional information, corrective measures, or additional monitoring is necessary for the USACE to approve monitoring release.

Contingency Plan March 2009

6.0 Contingency Plan

Should the project fail to meet the criteria as outlined herein, several options may be available. The initial step will be to determine the likely cause of failure. To remediate for the failure to meet these criteria, one of the following actions may be taken:

- ∉ Correction of the deficiency, if feasible;
- £ Extension of the monitoring period, for vegetation growth, et al.; and
- € Other methods of correction not specified at present, but permissible under future regulatory guidelines.

6.1 POTENTIAL MITIGATION CHALLENGES

As with virtually all stream restoration projects of this kind, several potential challenges exist. Flooding is generally the foremost concern, particularly during the period immediately following construction. Natural Channel Design relies on stable channel dimensions and the reinforcing action of bank vegetation to aid in resisting erosion. As the establishment of a root mass takes time, the stream is in its most vulnerable state immediately after construction. Erosion control measures are included to bridge the time gap between construction completion and the establishment of the root mass. Drought conditions during the first growing season can severely impair the ability of the vegetation to become established. Invasive species can potentially out-compete the riparian plantings on restoration projects.

In the event these or other challenges create a condition whereby success criteria are not met, corrective actions may be implemented. Corrective actions include, but are not limited to:

- Supplemental seeding of temporary ground cover or permanent herbaceous vegetation;
- € Supplemental planting of native tree and shrub species;
- € Culling of established vegetation:
- # Herbicide treatments (in accordance with label instructions);
- Re-setting or re-installing erosion controls including erosion control blankets along the channel bank;
- Re-grading channel and floodplain to meet dimension criteria; and
- Re-setting or re-building grade control structures and habitat structures.

6.2 CORRECTING DEFICIENCIES & PRE-AUTHORIZATION

The preference of KDFWR is to correct deficiencies and to develop a cooperative relationship with the USACE and KDOW to promote the success of the project. KDFWR will seek preauthorization for planned corrective measures from the USACE whenever practical. However, it is important to react swiftly to deficient situations before they become problematic. Therefore, as a matter of practicality, the KDFWR may implement corrective measures to meet annual and

StantecMITIGATION PLAN REPORT

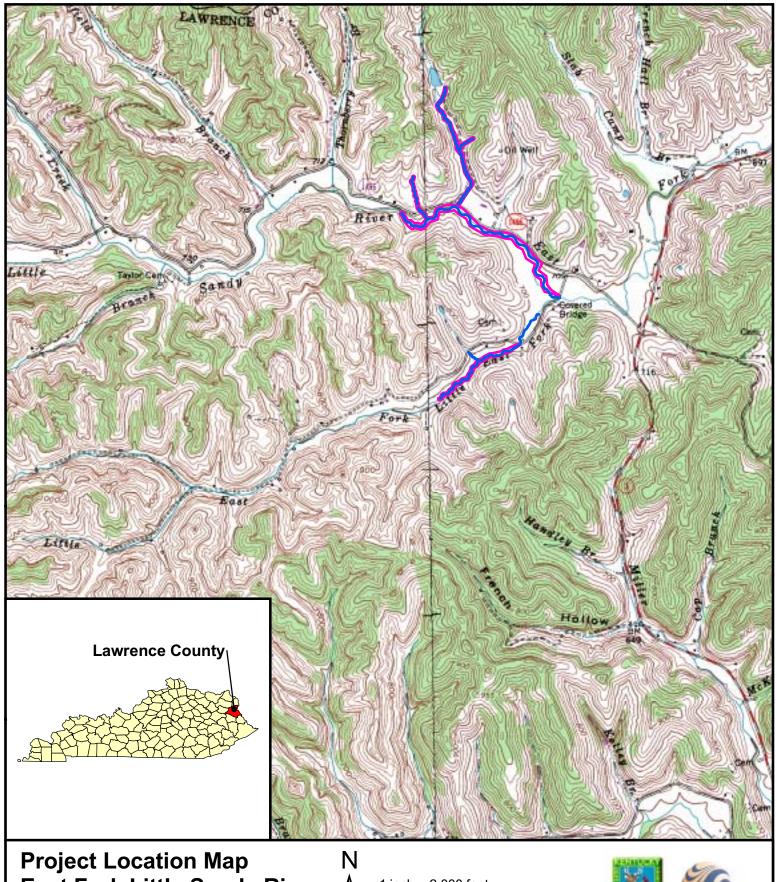
Contingency Plan March 2009

final success criteria without seeking pre-authorization of the USACE under the following conditions:

- The corrective measures are implemented in accordance with other federal and state regulations and are otherwise legal;
- The corrective measures are implemented within the range of acceptable limits established by the mitigation design and with materials presented in the mitigation plan; and
- The corrective measures are fully explained in the subsequent annual (or final) monitoring report.

If the proposed corrective measures will result in a feature or landscape outside of the design criteria, or will be constructed with different materials, prior authorization from the USACE will be required. For example, it is acceptable to augment the woody stem count with additional native tree and shrub species to obtain the success criterion without prior regulatory approval. The subsequent annual report would describe the deficiency and the specifications of the supplemental plantings. However, pre-authorization would be required if tree species not listed in the original design were used.

StantecMITIGATION PLAN REPORT


Contingency Plan March 2009

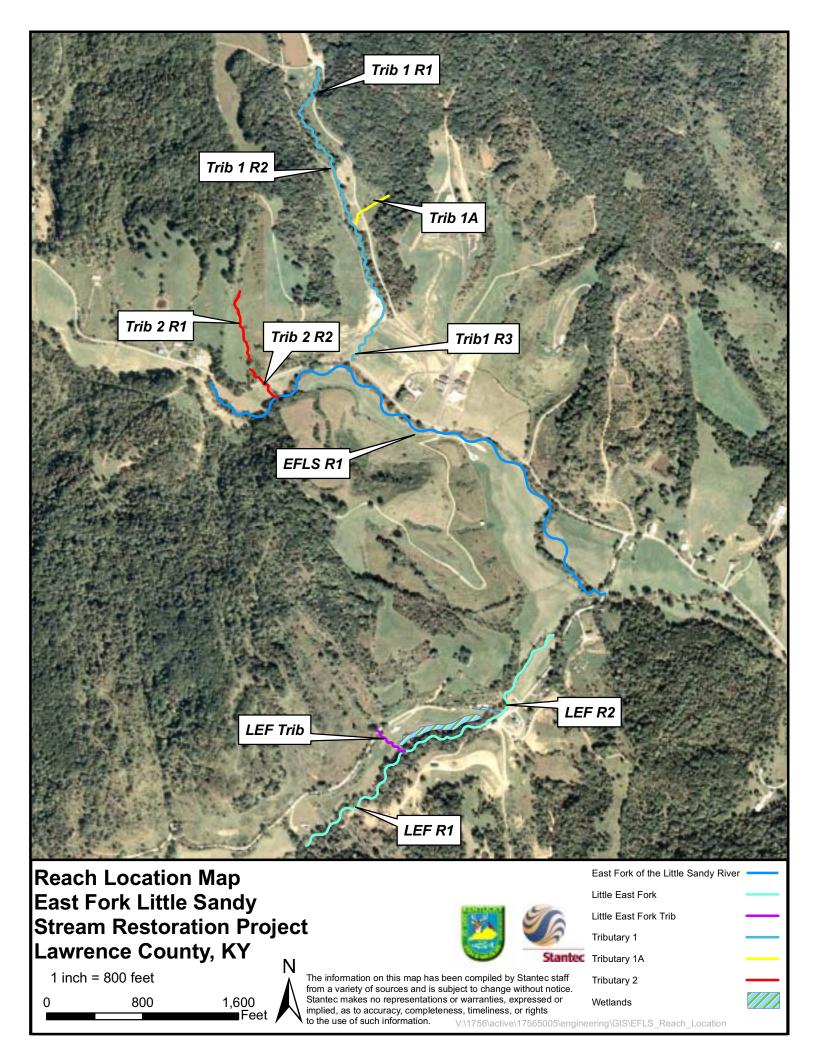
Literature Cited:

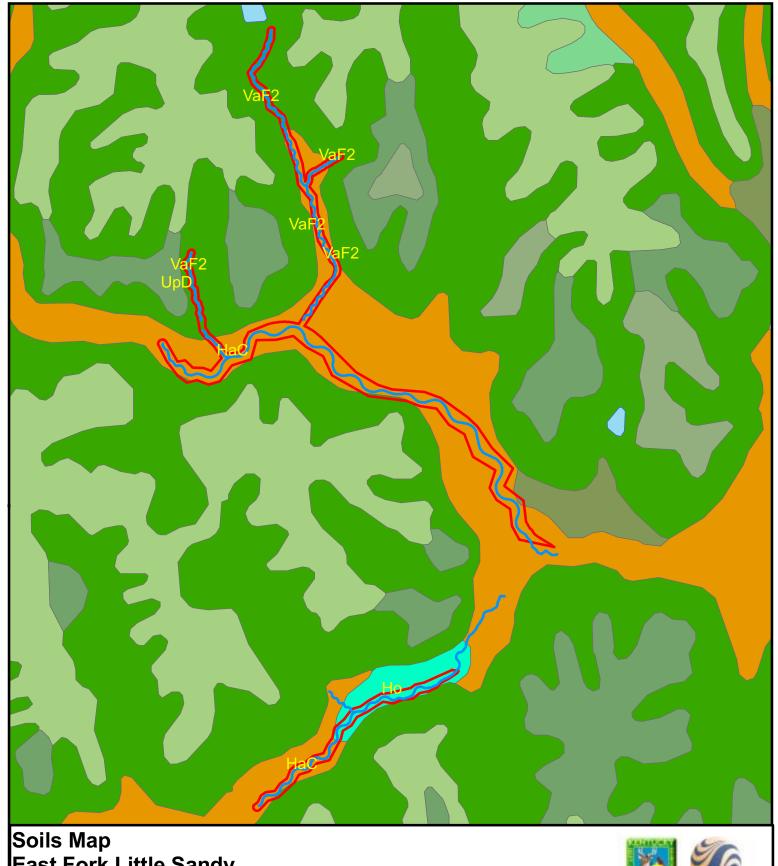
Sparks, J., T. Hangman, D. Messer, and J. Townsend. 2003. Eastern Kentucky stream assessment protocol: Utility in making mitigation decisions. *Aquatic Resources News: A Regulatory Newsletter* 2(2): 4-10.

East Fork Little Sandy River Lawrence County, KY

1 inch = 2,000 feet

4,000 ___Feet 2,000

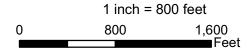




Proposed Stream Center Line

Project Extents

The information on this map has been compiled by Stantec staff from a variety of sources and is subject to change without notice. Stantec makes no representations or warranties, expressed or implied, as to accuracy, completeness, timeliness, or rights to the use of such information.

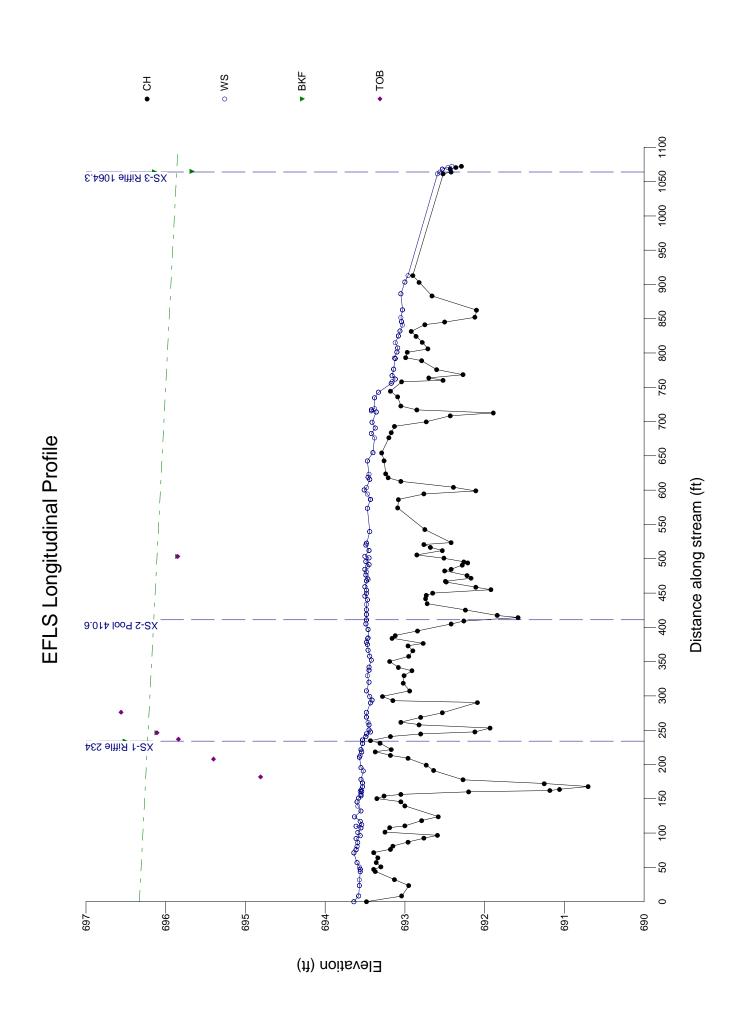


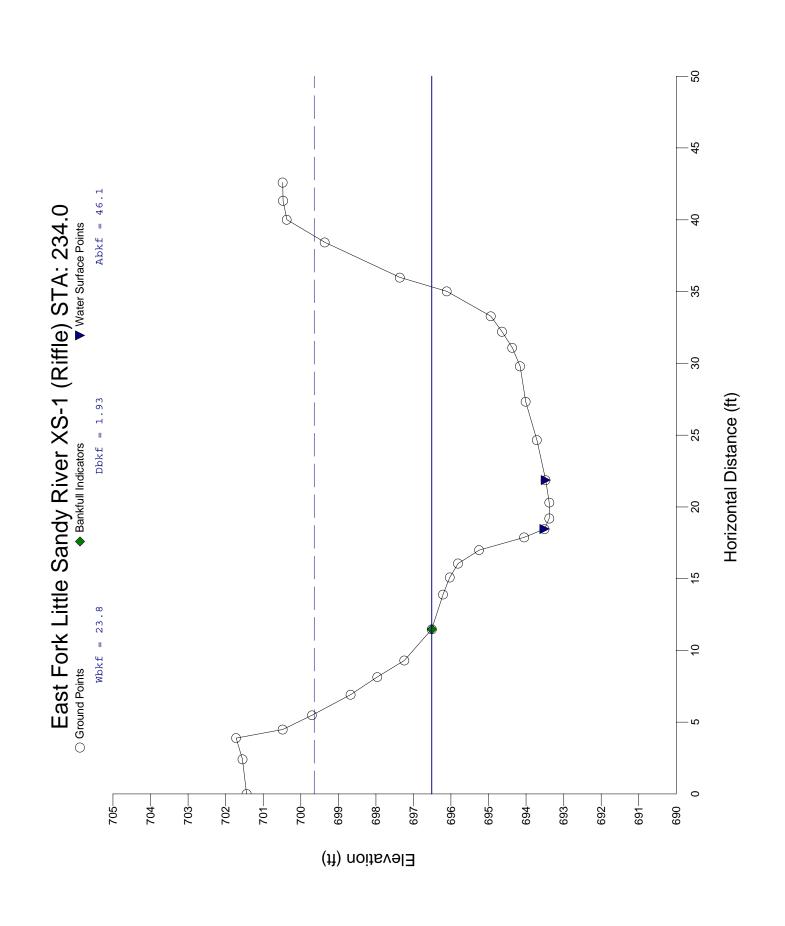
Soils Map East Fork Little Sandy Stream Restoration Project Lawrence County, KY

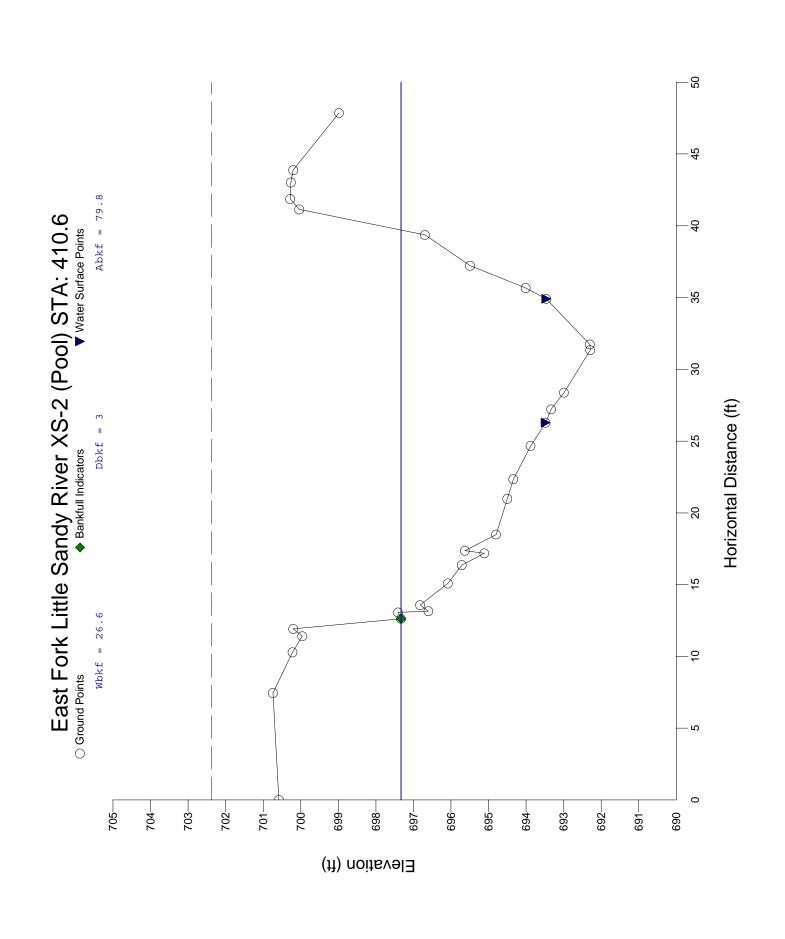
Proposed Stream Center Line

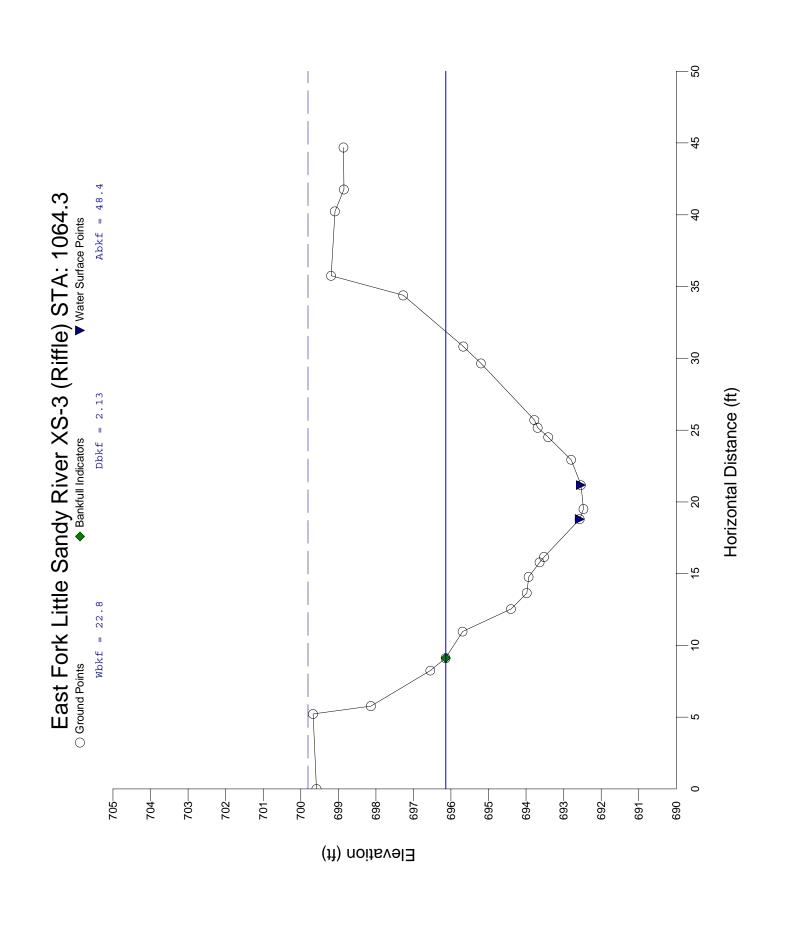
Project Extents

Hydric Soils




The information on this map has been compiled by Stantec staff from a variety of sources and is subject to change without notice. Stantec makes no representations or warranties, expressed


or implied, as to accuracy, completeness, timeliness, or rights to the use of such information.


V:\1756\subseteq 17565005\engineering\GIS\EFLS_SoilsMap

Appendix B – Existing Geomorphic Data

RIVERMORPH PARTICLE SUMMARY

River Name: EF Little Sandy River Reach Name: Reach 1 Sample Name: Riffle XS1 Survey Date: 06/18/2008

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 5 1 21 9 17 16 19 9 2 0 0 0 0 0 0 0 0 0	1.00 0.00 5.00 1.00 21.00 9.00 17.00 16.00 19.00 9.00 2.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 6.00 7.00 28.00 37.00 54.00 70.00 89.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.71 1.78 3.53 7.39 10.2 16 1 36 63 0		

Total Particles = 100.

River Name: EF Little Sandy River Reach Name: Reach 1 Sample Name: Riffle XS-3 O8/14/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 1 14 2 15 18 12 19 6 6 0 0 0 0 0 0 0	1.00 0.00 0.00 1.00 14.00 2.00 15.00 18.00 12.00 19.00 6.00 6.00 0.00 4.00 2.00 0.00 0.00 0.00 0.00 0	1.00 1.00 2.00 16.00 18.00 33.00 51.00 63.00 82.00 88.00 94.00 94.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1 4.19 5.61 12.87 35.25 64 1 17 82 0 0		

River Name: EF Little Sandy River Reach Name: Reach 1 Sample Name: Reach Avg Survey Date: 06/18/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	5 0 5 30 34 3 7 2 9 4 1 0 0 0 0 0 0 0 0 0	5.00 0.00 5.00 30.00 34.00 3.00 7.00 2.00 9.00 4.00 1.00 0.00	5.00 5.00 10.00 40.00 74.00 77.00 84.00 86.00 95.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.3 0.46 0.65 4 8 16 5 72 23 0 0		

River Name: EF Little Sandy River

Reach Name: Reach 1

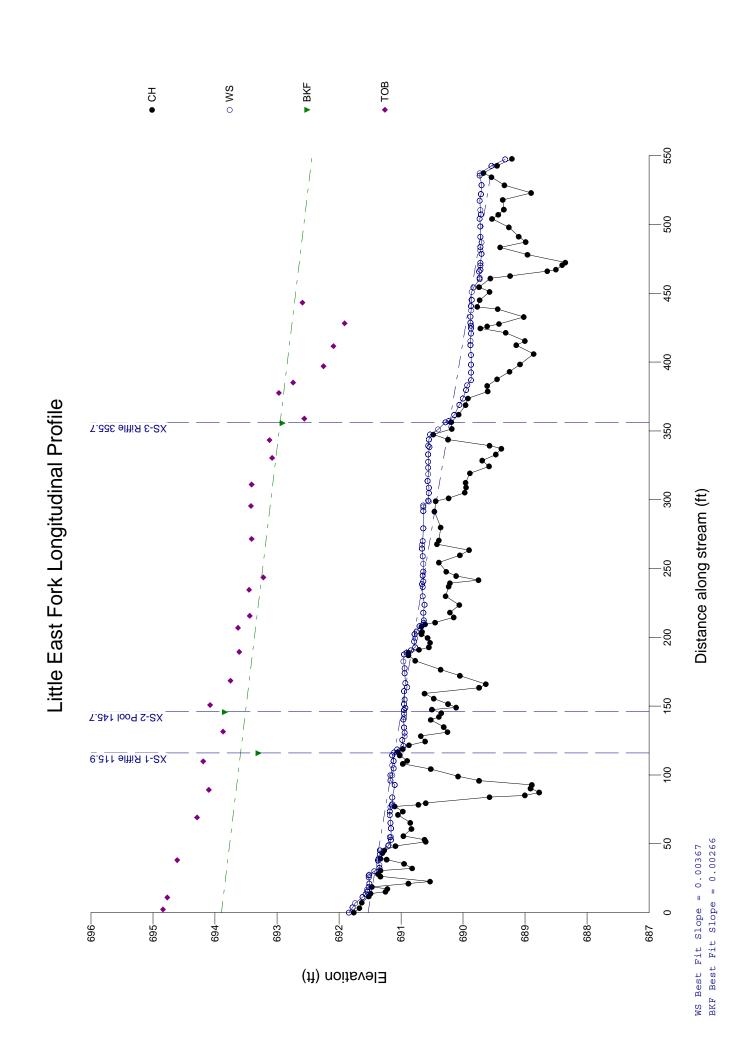
Sample Name: Bar Sample 2 Survey Date: 08/18/2008

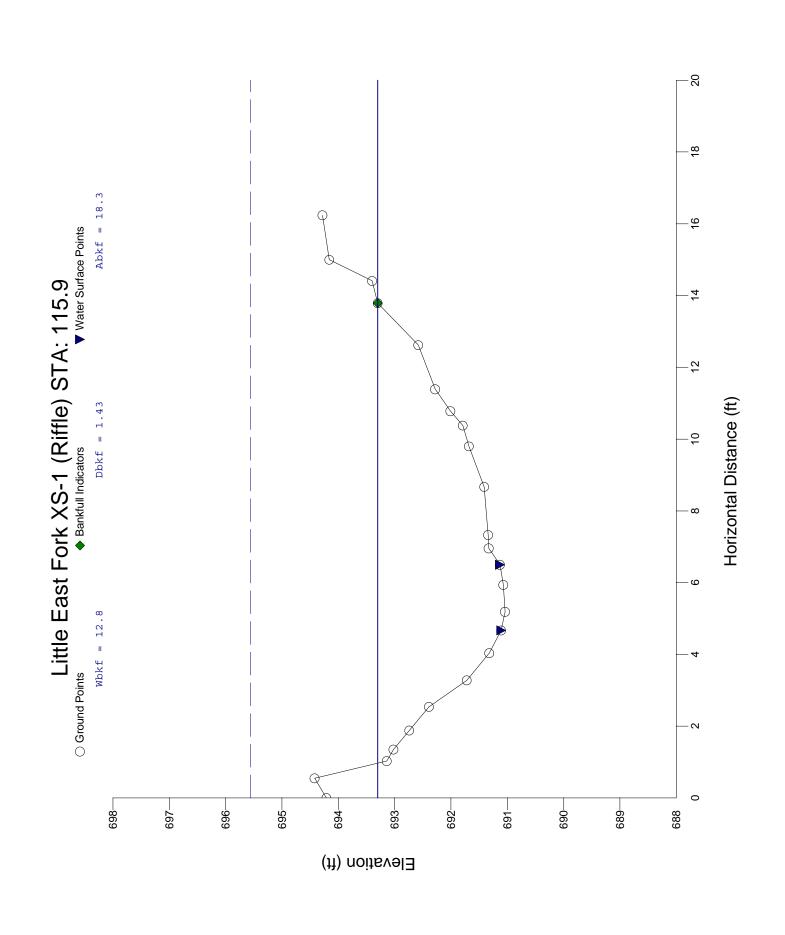
SIEVE (mm)	NET WT
16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	8.59 104.23 607.44 835.35 1289.27 871.36 1531.57 382.66 35.89 26.53
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.39 0.61 0.86 3.61 7.07 32.09 0 72.27 27.73 0

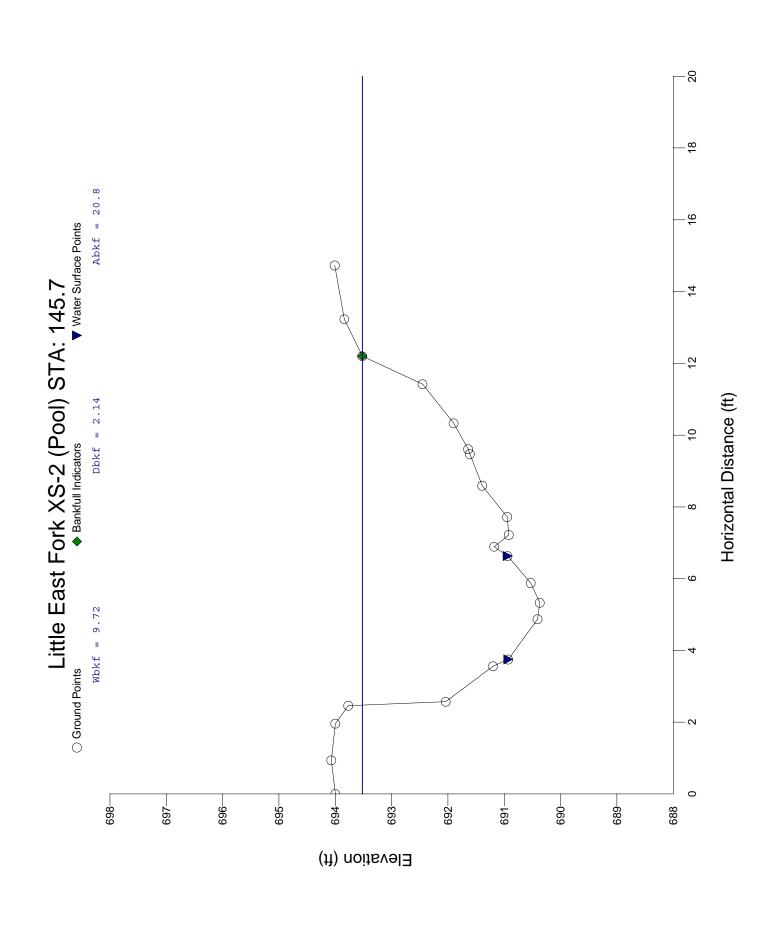
Total Weight = 5724.6200.

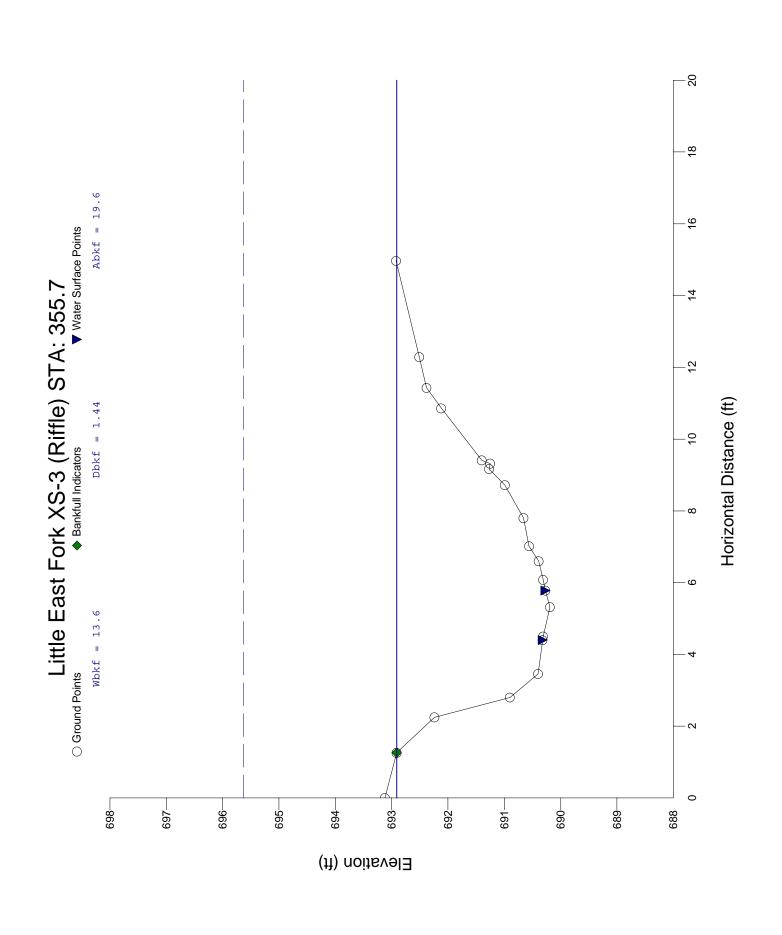
Largest Surface Particles:

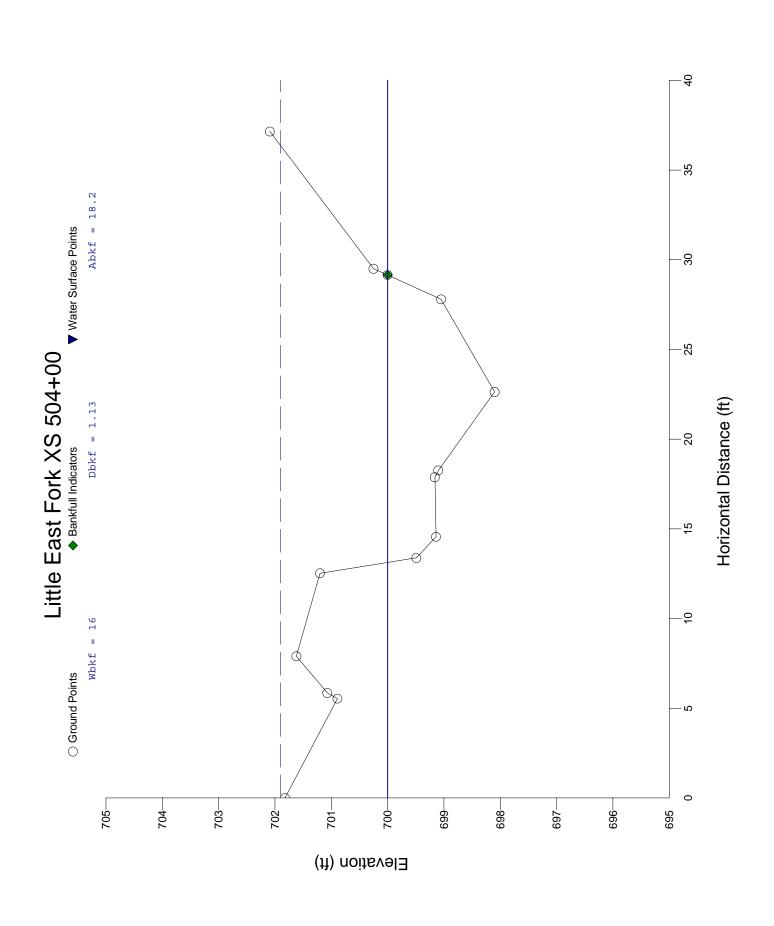
Size(mm) Weight Particle 1: 32.09 17.27 Particle 2: 20.13 14.46


River Name: EF Little Sandy River
Reach Name: Reach 1 <-- This is not a Reference Reach


Drainage Area: 7 sq mi Kentucky Lawrence State: County:


Latitude: Longitude: 0


Survey Date: 07/14/2008


Valley Type:	Type VIII	
Valley Slope:	0.0022	ft/ft
Number of Channels:	Single	
width:	22.76	ft
Mean Depth:	2.13	ft
Flood-Prone Width:	100	ft
Channel Materials D50:	0.65	mm
Water Surface Slope:	0.0018	ft/ft
Sinuosity:	1.1	
Discharge:	205	cfs
Velocity:	4.24	fps
Cross Sectional Area:	48.36	sq ft
Entrenchment Ratio:	4.39	•
Width to Depth Ratio:	10.69	
Rosgen Stream Classification:	E 5	

River Name: Little East Fork Reach Name: Reach 1 Sample Name: Riffle XS3 Survey Date: 08/25/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 25 4 3 9 9 8 8 8 13 10 2 0 0 0 0 0 0 0	1.00 0.00 0.00 25.00 4.00 3.00 9.00 9.00 8.00 8.00 13.00 10.00 2.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 26.00 30.00 33.00 42.00 51.00 59.00 67.00 75.00 88.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.4 2.44 5.51 20.57 29.18 45 1 32 67 0		

River Name:
Reach Name:
Sample Name:
Survey Date:

Little East Fork
Reach 1
upstream reach
09/11/2008

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 1 3 2 3 3 4 8 14 17 18 24 13 2 0 0 0 0 0	0.00 0.00 0.00 0.89 2.68 1.79 2.68 2.68 3.57 7.14 12.50 15.18 16.07 21.43 11.61 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.89 3.57 5.36 8.04 10.71 14.29 21.43 33.93 49.11 65.18 86.61 98.21 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	8.79 16.47 23.12 43.42 58.74 90 0 5.36 92.85 1.79 0		

River Name: Little East Fork

Reach Name: Reach 1
Sample Name: Bar Sample
Survey Date: 08/25/2008

SIEVE (mm)	NET WT
16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	468.86 1742.72 1388.88 907.84 988.39 754.57 1138.74 268.02 76.63 53.66
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.53 1.38 3.42 12.66 18.12 33.57 0 41.79 58.21 0

Total Weight = 7848.5200.

Largest Surface Particles:

Size(mm) Weight Particle 1: 24.19 38.99 Particle 2: 33.57 21.22

River Name: Little East Fork
Reach Name: Reach 1 <-- This is not a Reference Reach
Drainage Area: 1.9 sq mi
State: Kentucky
County: Lawrence
Latitude: 0
Longitude: 0
Survey Date: 08/25/2008

Valley Type:	Type VIII
Valley Slope:	0.0031 ft/ft
Number of Channels:	Single
Width:	16.02 ft
Mean Depth:	1.13 ft
Flood-Prone Width:	36.36 ft
Channel Materials D50:	2.83 mm
Water Surface Slope:	0.0026 ft/ft
Sinuosity:	1.18
Discharge:	67 cfs
Velocity:	3.53 fps
Cross Sectional Area:	19 sq ft
Entrenchment Ratio:	2.27
Width to Depth Ratio:	14.18
Rosgen Stream Classification:	C 4

River Name: Little East Fork
Reach Name: Reach 2
Sample Name: Riffle XS1
Survey Date: 06/19/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	4 0 1 7 15 3 5 7 21 18 6 12 1 0 0 0 0 0 0 0 0	4.00 0.00 1.00 7.00 15.00 3.00 5.00 7.00 21.00 18.00 6.00 12.00 1.00 0.00 0.00 0.00 0.00 0.00	4.00 4.00 5.00 12.00 27.00 30.00 35.00 42.00 63.00 81.00 87.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.63 4 6.58 13.65 20.4 32 4 26 70 0		

River Name: Little East Fork
Reach Name: Reach 2
Sample Name: Riffle XS3
Survey Date: 06/19/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 25 4 3 9 9 8 8 8 13 10 2 0 0 0 0 0 0	1.00 0.00 0.00 25.00 4.00 3.00 9.00 9.00 8.00 8.00 13.00 10.00 2.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 26.00 30.00 33.00 42.00 51.00 59.00 67.00 75.00 88.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.4 2.44 5.51 20.57 29.18 45 1 32 67 0		

River Name: Little East Fork
Reach Name: Reach 2
Sample Name: Reach Avg
Survey Date: 06/19/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	8 0 7 23 9 1 6 12 8 9 1 9 4 4 0 0 0 0 0 0 0	7.92 0.00 6.93 22.77 8.91 0.99 5.94 11.88 7.92 8.91 0.99 8.91 3.96 3.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.92 7.92 14.85 37.62 46.53 47.52 53.47 65.35 73.27 82.18 83.17 92.08 96.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.26 0.47 2.83 16.61 29.53 45 7.92 39.6 52.48 0		

Little East Fork River Name:

Reach Name: Reach 2 Bar Sample 06/19/2008 Sample Name: Survey Date:

SIEVE (mm)	NET WT
16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	480.25 824.47 623.89 401.29 411.5 723.32 670.09 144.3 51.08 25.3
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.52 0.83 2.89 14.34 26.32 33.57 0 45.93 54.07 0

Total Weight = 4409.9500.

Largest Surface Particles:
Size(mm) Wer
Particle 1: 33.57 22 Weight 21.22 33.24 Particle 2: 24.97

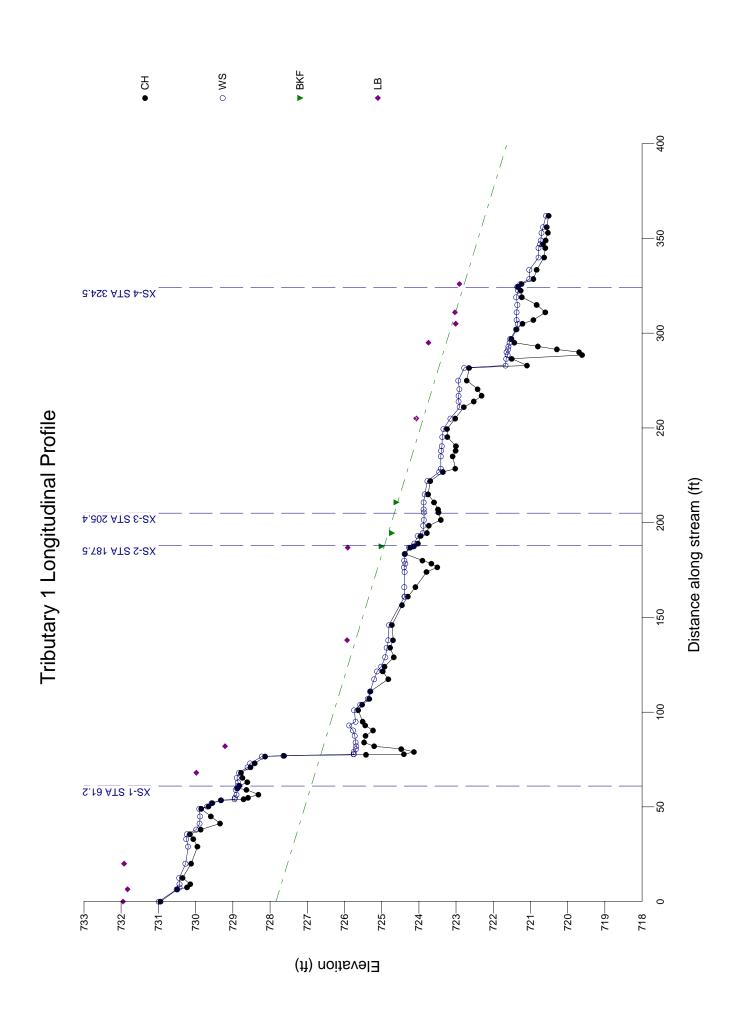
River Name: Little East Fork

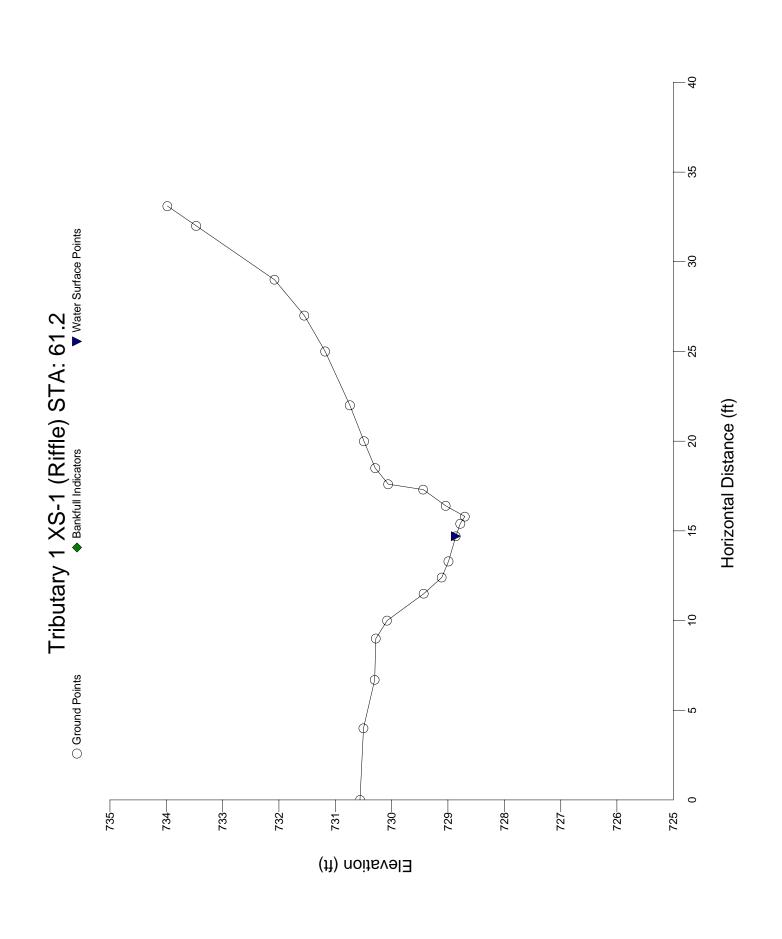
Reach Name: Reach 2

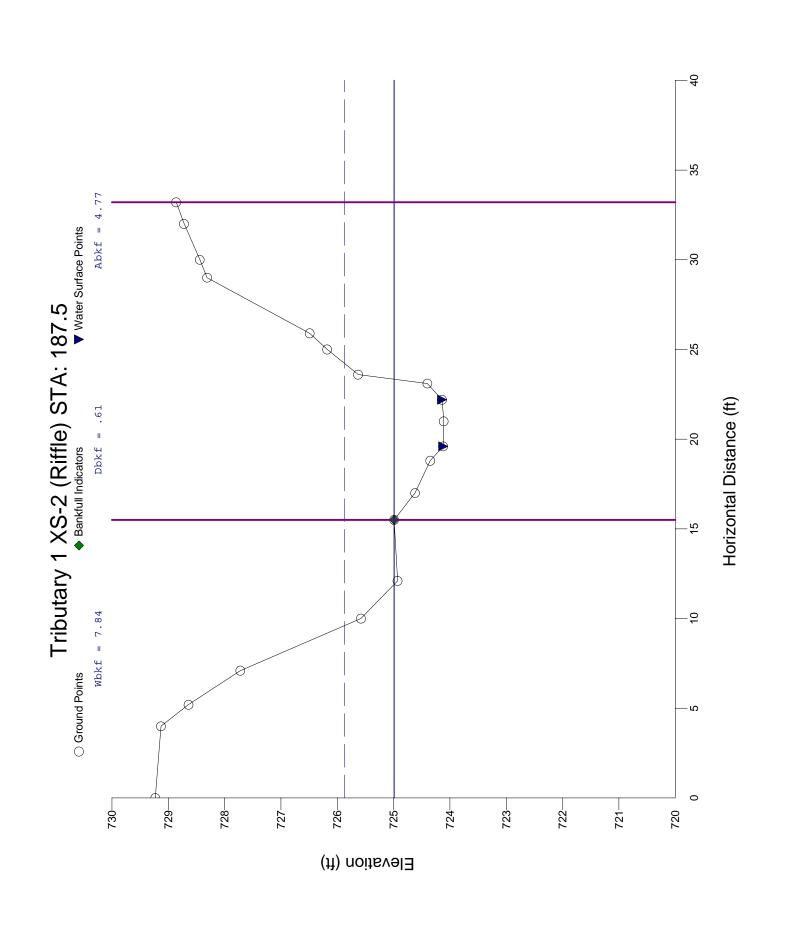
Sample Name: Bar Sample 2 Survey Date: 08/18/2008

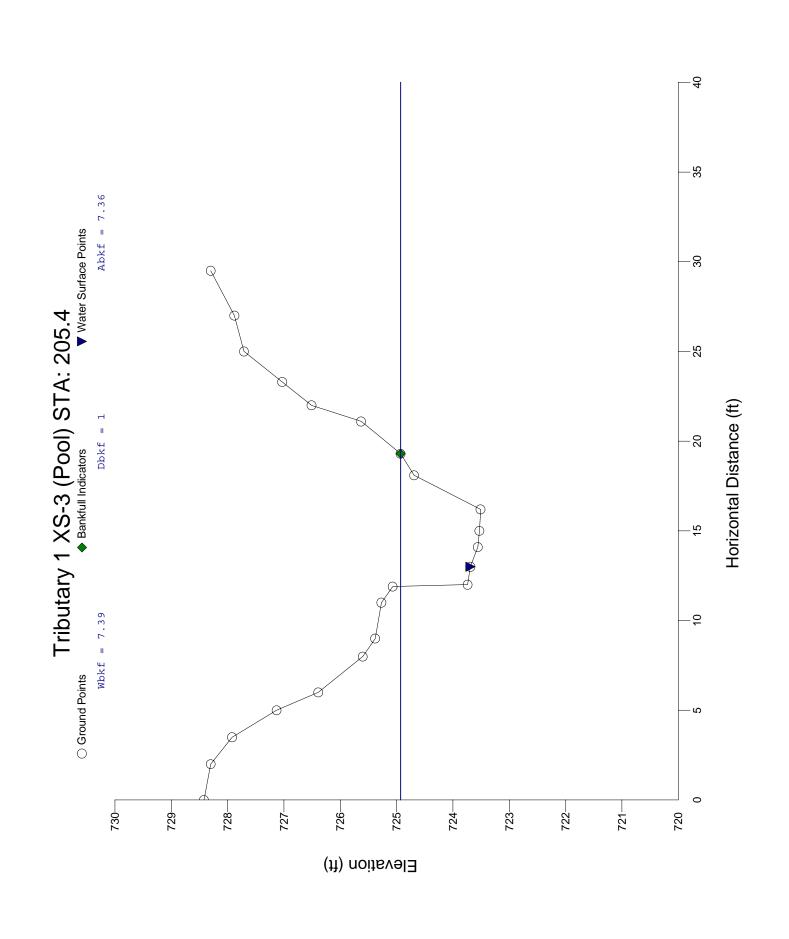
SIEVE (mm)	NET WT
16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	468.86 1742.72 1388.88 907.84 988.39 754.57 1138.74 268.02 76.63 53.66
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.53 1.38 3.42 12.66 18.12 33.57 0 41.79 58.21 0

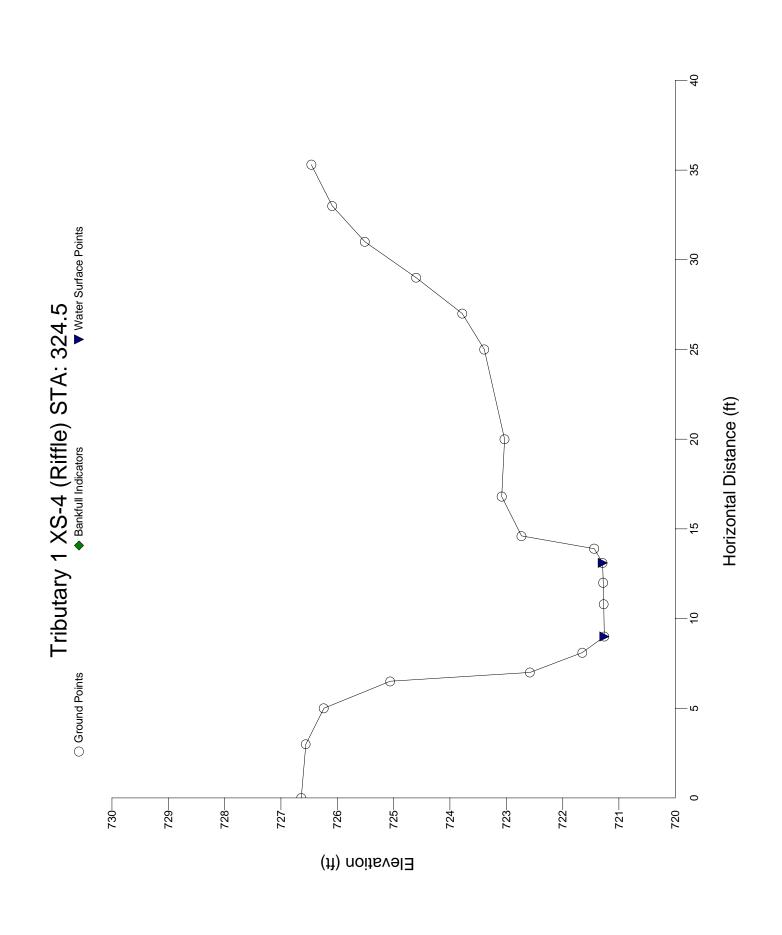
Total Weight = 7848.5200.

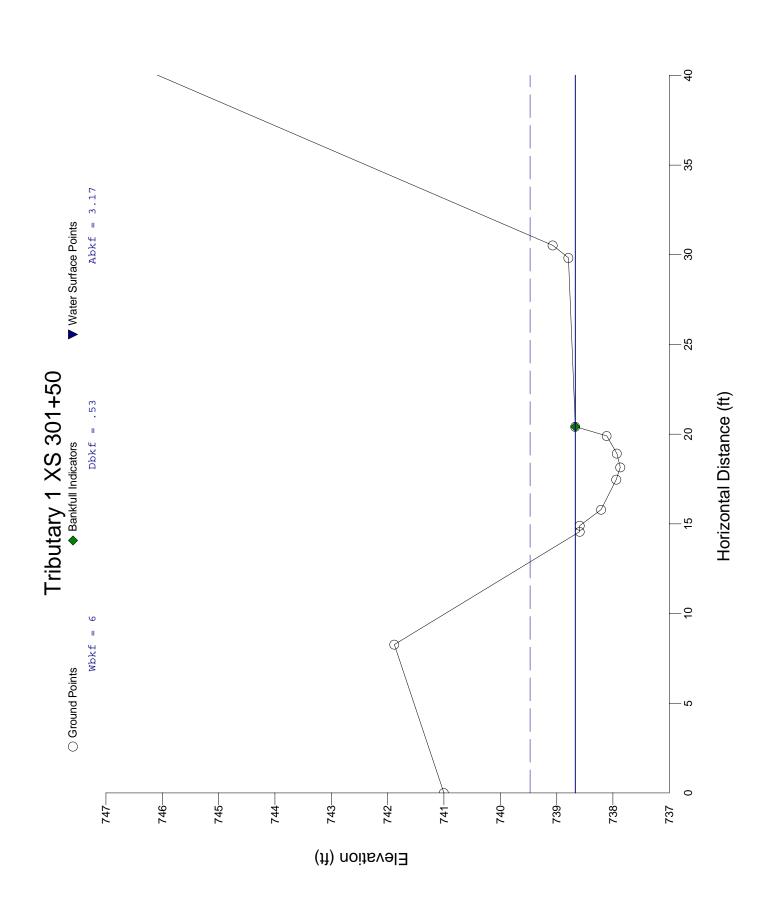

Largest Surface Particles:

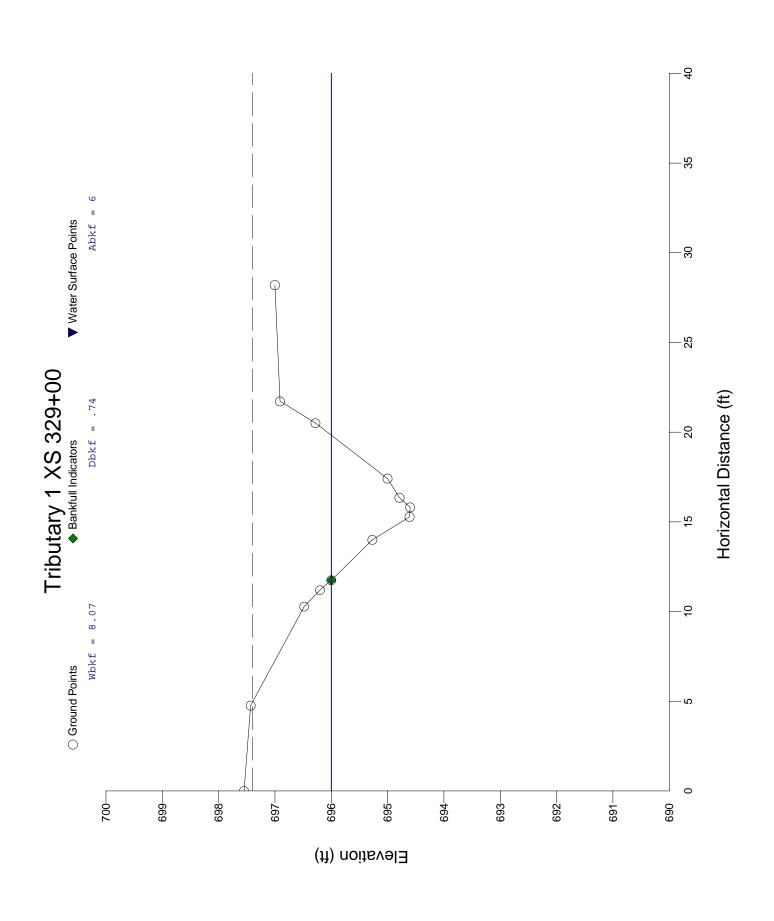

Size(mm) Weight Particle 1: 24.19 38.99 Particle 2: 33.57 21.22


River Name: Little East Fork
Reach Name: Reach 2 <-- This is not a Reference Reach
Drainage Area: 2.15 sq mi
State: Kentucky
County: Lawrence
Latitude: 0


Longitude: 0 Survey Date: 07/14/2008


Valley Type:	Type VIII	
Valley Slope:	0.005	ft/ft
Number of Channels:	Single	
width:	12.82	ft
Mean Depth:	1.43	ft
Flood-Prone Width:	150	ft
Channel Materials D50:	2.83	mm
Water Surface Slope:	0.004	ft/ft
Sinuosity:	1.18	
Discharge:	85.24	cfs
Velocity:	4.65	fps
Cross Sectional Area:	18.35	sq ft
Entrenchment Ratio:	11.7	-
Width to Depth Ratio:	8.97	
Rosgen Stream Classification:	E 4	





River Name: Trib-1
Reach Name: Reach 1
Sample Name: XS-2
Survey Date: 08/21/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 0 7 1 1 3 3 8 8 1 15 22 10 12 8 1 1 0 0 0 0 0	1.00 0.00 0.00 0.00 7.00 1.00 3.00 8.00 8.00 15.00 22.00 10.00 12.00 8.00 1.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 8.00 9.00 12.00 15.00 23.00 31.00 46.00 68.00 78.00 90.00 90.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	5.99 12.55 17.2 38.5 56.88 128 1 8 89 2		

River Name: Trib-1
Reach Name: Reach 1
Sample Name: Reach Avg
Survey Date: 08/21/2008

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 4 13 2 7 6 8 8 12 12 7 11 6 2 1 1 0 0 0 0	0.00 0.00 0.00 4.00 13.00 2.00 7.00 6.00 8.00 8.00 12.00 12.00 7.00 11.00 6.00 2.00 1.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 4.00 17.00 19.00 26.00 32.00 40.00 48.00 60.00 72.00 79.00 90.00 96.00 98.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.96 6.56 12.08 37.91 60.83 179.99 0 19 77 4		

River Name: Trib-1
Reach Name: Reach 1
Sample Name: Bar Sample
Survey Date: 08/21/2008

SIEVE (mm)	NET WT
31.5 16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	191 1642 1524 1325.57 886.9 851.04 273.29 372.48 165.33 81.38 70.79
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.17 3.83 7.16 23.05 30.84 51 0 24.2 75.8 0

Total Weight = 7497.7800.

Largest Surface Particles:

Size(mm) Weight
Particle 1: 51 57
Particle 2: 51 57

River Name: Trib-1 Reach Name: Reach 1 < -- This is not a Reference Reach

Drainage Area: 0.152 sq mi State: Kentucky
County: Lawrence
Latitude: 0

0 Longitude:

Survey Date: 08/21/2008

Valley Type:	Type II	
Valley Slope:	0.028	ft/ft
Number of Channels:	Single	
width:	6	ft
Mean Depth:	0.53	ft
Flood-Prone Width:	18.18	ft
Channel Materials D50:	12.08	mm
Water Surface Slope:	0.025	ft/ft
Sinuosity:	1.14	
Discharge:	12.59	cfs
Velocity:	3.97	fps
Cross Sectional Area:	3.17	sq ft
Entrenchment Ratio:	3.03	•
Width to Depth Ratio:	11.32	
Rosgen Stream Classification:	В4	

River Name: Trib-1
Reach Name: Reach 2
Sample Name: XS-2
Survey Date: 06/11/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 0 7 1 3 3 8 8 15 22 10 12 8 1 1 0 0 0 0	1.00 0.00 0.00 0.00 7.00 1.00 3.00 8.00 8.00 15.00 22.00 10.00 12.00 8.00 1.00 1.00 0.00 0.00 0.00 0.00 0	1.00 1.00 1.00 1.00 8.00 9.00 12.00 15.00 23.00 31.00 46.00 68.00 78.00 90.00 98.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	5.99 12.55 17.2 38.5 56.88 128 1 8 89 2 0		

River Name: Trib-1
Reach Name: Reach 2
Sample Name: XS-4
Survey Date: 06/11/2008

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 2 10 5 4 6 13 8 9 17 11 10 5 0 0 0 0 0	0.00 0.00 0.00 2.00 10.00 5.00 4.00 6.00 13.00 8.00 9.00 17.00 11.00 10.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 2.00 12.00 17.00 21.00 27.00 40.00 48.00 57.00 74.00 85.00 95.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.8 7.12 12.34 31.15 45 64 0 17 83 0 0		

River Name: Trib-1
Reach Name: Reach 2
Sample Name: Reach Avg
Survey Date: 06/11/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 4 13 2 7 6 8 8 12 12 7 11 6 2 1 1 0 0 0 0	0.00 0.00 0.00 4.00 13.00 2.00 7.00 6.00 8.00 12.00 12.00 7.00 11.00 6.00 2.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 4.00 17.00 19.00 26.00 32.00 40.00 48.00 60.00 72.00 79.00 90.00 96.00 98.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.96 6.56 12.08 37.91 60.83 179.99 0 19 77 4		

River Name: Trib-1
Reach Name: Reach 2
Sample Name: Bar Sample
Survey Date: 06/11/2008

SIEVE (mm)	NET WT
31.5 16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	191 1642 1524 1325.57 886.9 851.04 273.29 372.48 165.33 81.38 70.79
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.17 3.83 7.16 23.05 30.84 51 0 24.2 75.8 0

Total Weight = 7497.7800.

Largest Surface Particles:

Size(mm) Weight
Particle 1: 51 57
Particle 2: 51 57

River Name: Trib-1 Reach Name: Reach 2 <-- This is not a Reference Reach

Drainage Area: 0.219 sq mi State: Kentucky
County: Lawrence
Latitude: 38.22333
Longitude: 82.75139
Survey Date: 08/07/2008

Vallay Types	T. (20 0 T.T.	
Valley Type:	Type II	c. /c.
Valley Slope:	0.0203	TT/TT
Number of Channels:	Single	
width:	7.84	ft
Mean Depth:	0.61	ft
Flood-Prone Width:	14.6	ft
Channel Materials D50:	12.08	
Water Surface Slope:	0.016	ft/ft
Sinuosity:	1.27	
Discharge:	17.25	cfs
Velocity:	3.62	fps
Cross Sectional Area:	4.77	sq ft
Entrenchment Ratio:	1.86	-
Width to Depth Ratio:	12.85	
Rosgen Stream Classification:	В 4с	

River Name: Trib-1
Reach Name: Reach 3
Sample Name: XS-4
Survey Date: 08/25/2008

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 2 10 5 4 6 13 8 9 17 11 10 5 0 0 0 0 0	0.00 0.00 0.00 2.00 10.00 5.00 4.00 6.00 13.00 8.00 9.00 17.00 11.00 10.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 2.00 12.00 17.00 21.00 27.00 40.00 48.00 57.00 74.00 85.00 95.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.8 7.12 12.34 31.15 45 64 0 17 83 0 0		

RIVERMORPH PARTICLE SUMMARY

River Name: Trib-1
Reach Name: Reach 3
Sample Name: Reach 3
Survey Date: 09/11/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	21 0 1 0 0 0 7 7 32 21 20 4 1 0 0 0 0 0 0	18.42 0.00 0.88 0.00 0.00 0.00 6.14 6.14 28.07 18.42 17.54 3.51 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	18.42 18.42 19.30 19.30 19.30 25.44 31.58 59.65 78.07 95.61 99.12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.05 5.98 7.21 12.89 15.84 32 18.42 0.88 80.7 0		

Total Particles = 114.

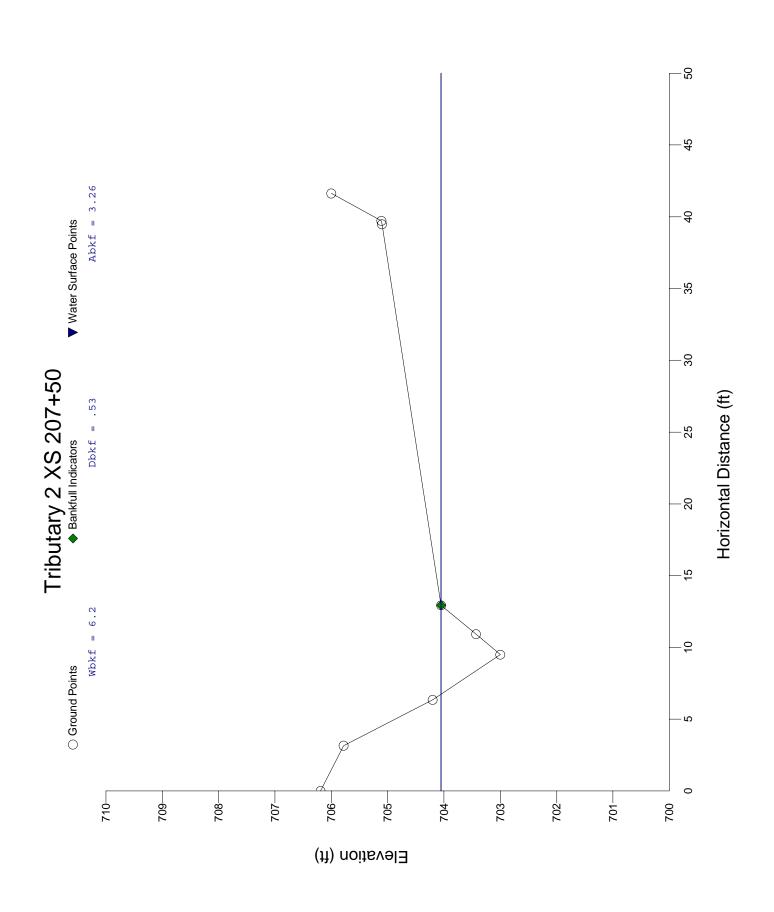
RIVERMORPH PARTICLE SUMMARY

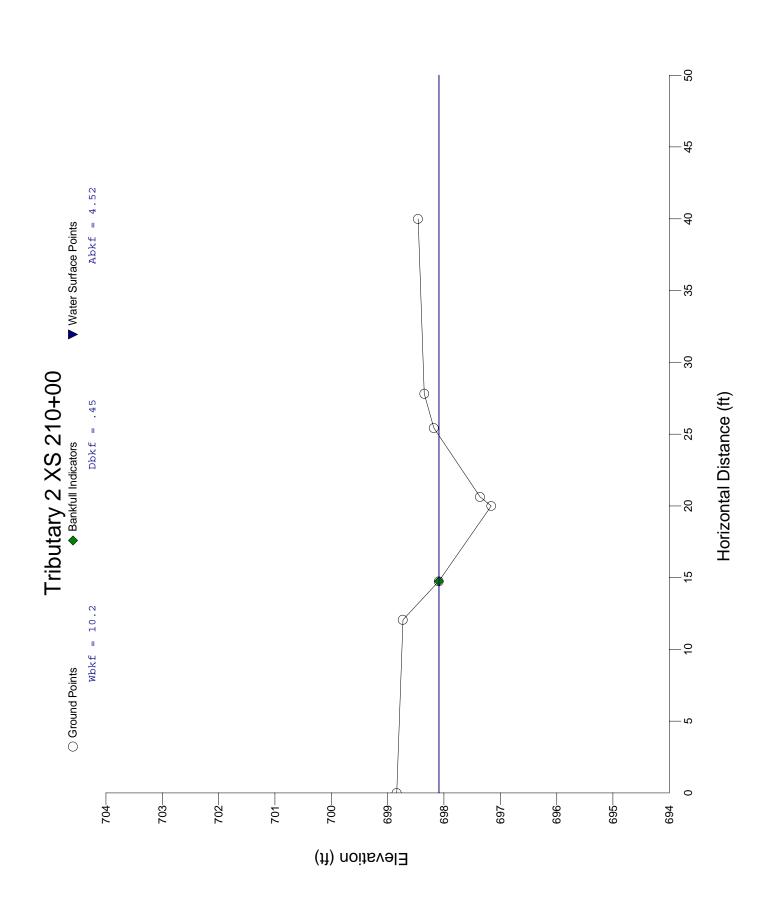
River Name: Trib-1
Reach Name: Reach 3
Sample Name: Bar Sample
Survey Date: 08/21/2008

SIEVE (mm)	NET WT
31.5 16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	191 1642 1524 1325.57 886.9 851.04 273.29 372.48 165.33 81.38 70.72
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.17 3.83 7.16 23.05 30.84 51 0 24.2 75.8 0

Total Weight = 7497.7100.

Largest Surface Particles:


Size(mm) Weight
Particle 1: 51 57
Particle 2: 51 57


RIVERMORPH STREAM CHANNEL CLASSIFICATION

River Name: Trib-1
Reach Name: Reach 3 <-- This is not a Reference Reach
Drainage Area: 0.3 sq mi
State: Kentucky
County: Lawrence
Latitude: 0
Longitude: 0
Survey Date: 08/25/2008

Classification Data

Valley Type:	Type VIII	
Valley Slope:	0.008	ft/ft
Number of Channels:	Single	
width:	8.07	ft
Mean Depth:	0.74	ft
Flood-Prone Width:	37	ft
Channel Materials D50:		mm
Water Surface Slope:	0.0075	ft/ft
Sinuosity:	1.05	
Discharge:	24.25	
Velocity:	4.04	fps
Cross Sectional Area:	6	sq ft
Entrenchment Ratio:	4.58	•
Width to Depth Ratio:	10.91	
Rosgen Stream Classification:	E 4	

RIVERMORPH PARTICLE SUMMARY

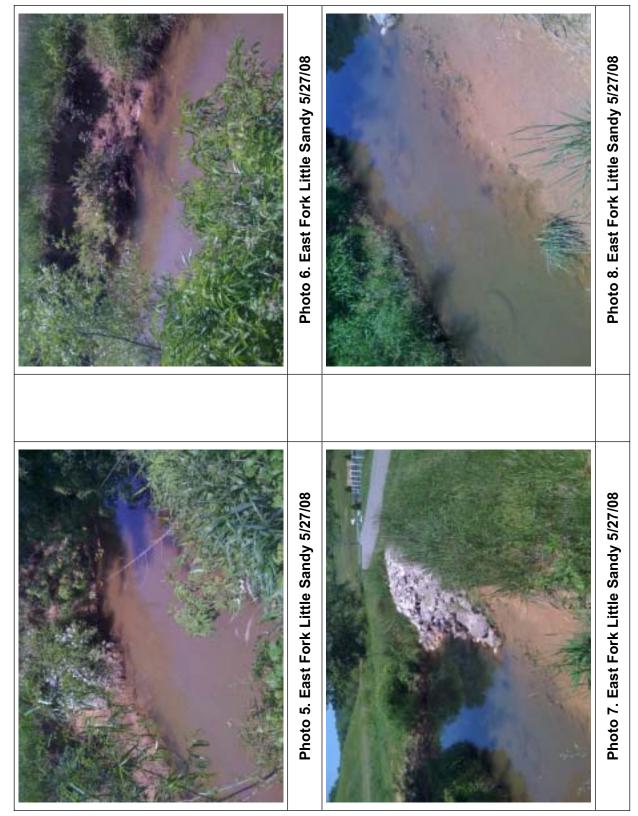
River Name: Trib-2
Reach Name: Reach 2
Sample Name: XS-2 from trib 1
Survey Date: 08/26/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	1 0 0 0 7 1 1 3 3 8 8 1 5 22 10 12 8 1 1 0 0 0 0	1.00 0.00 0.00 0.00 7.00 1.00 3.00 3.00 8.00 8.00 15.00 22.00 10.00 12.00 8.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 8.00 9.00 12.00 15.00 23.00 31.00 46.00 68.00 78.00 90.00 98.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	5.99 12.55 17.2 38.5 56.88 128 1 8 89 2		

Total Particles = 100.

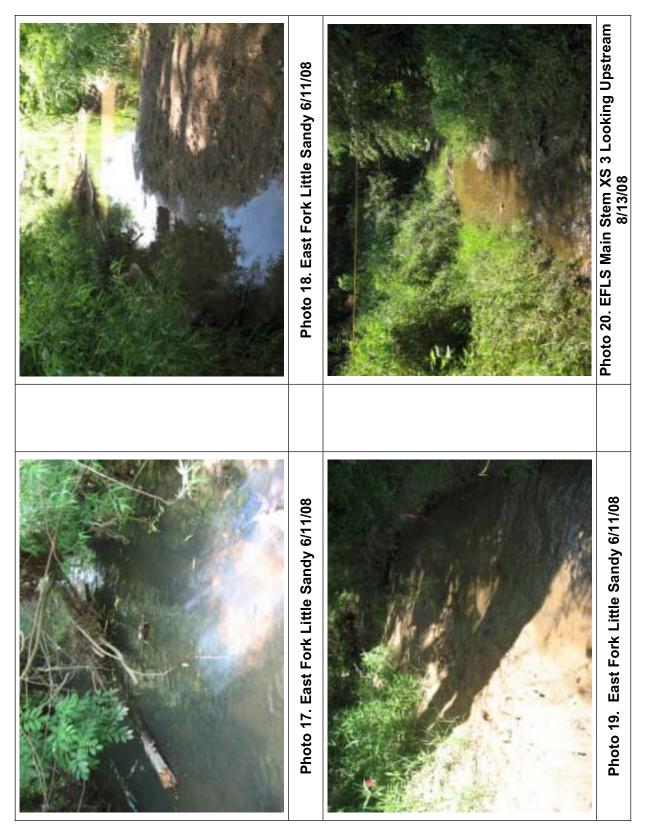
RIVERMORPH STREAM CHANNEL CLASSIFICATION

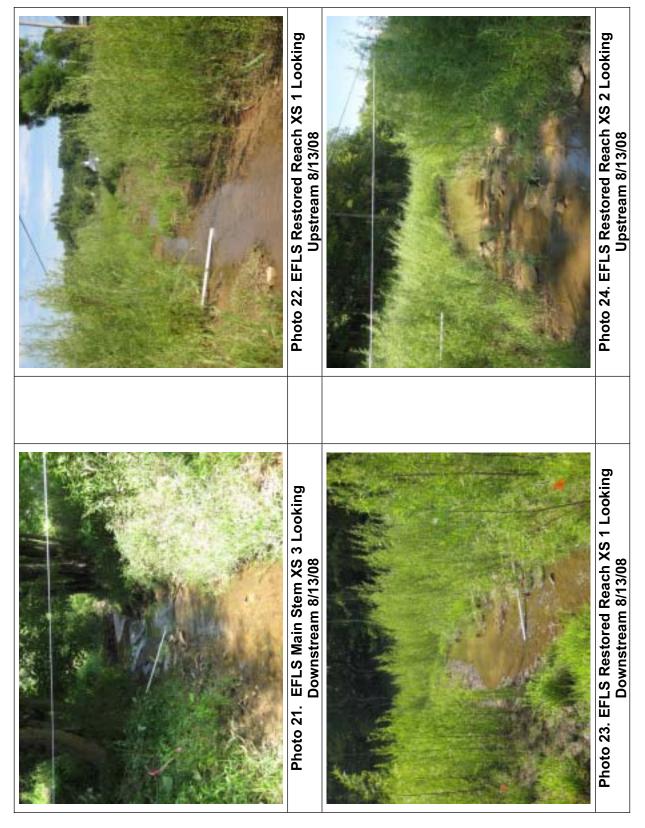
River Name: Trib-2 Reach Name: Reach 2 <-- This is not a Reference Reach Drainage Area: 0.025 sq mi

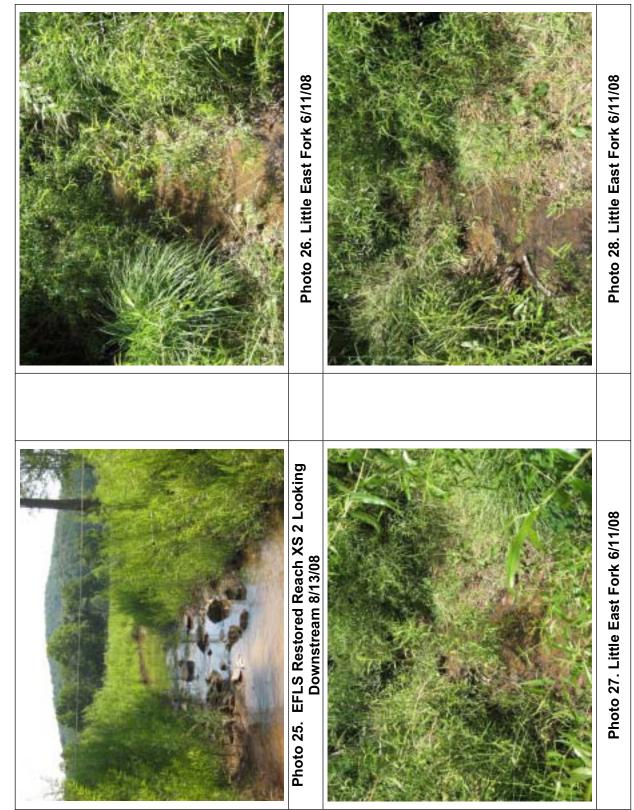

State: Kentucky
County: Lawrence
Latitude: 0
Longitude: 0
Survey Date: 08/26/2008

Classification Data

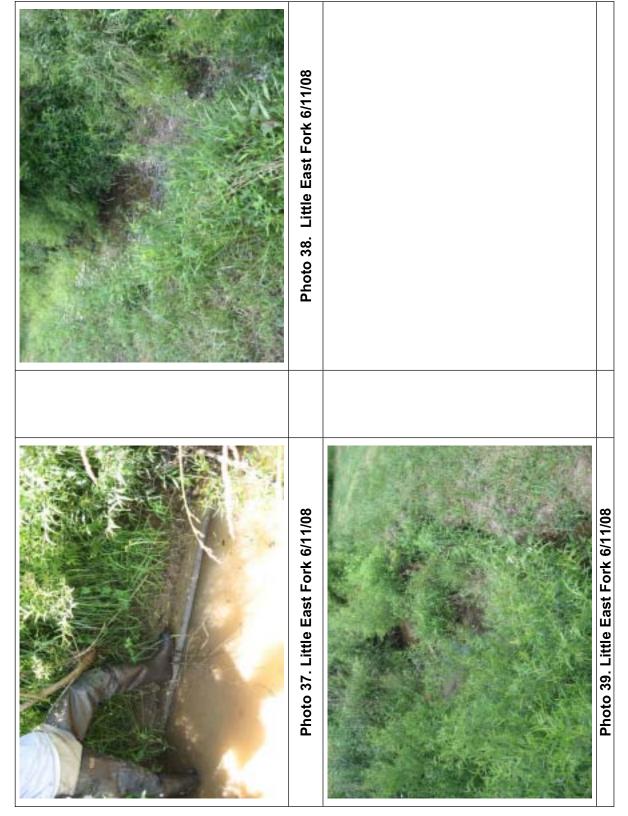
Valley Type:	Type VIII	
Valley Slope:	0.0242	ft/ft
Number of Channels:	Single	
width:	6.2	
Mean Depth:	0.53	ft
Flood-Prone Width:	34.96	
Channel Materials D50:	11	
Water Surface Slope:	0.023	ft/ft
Sinuosity:	1.05	
Discharge:	13.2	cfs
Velocity:	4.05	fps
Cross Sectional Area:	3.26	sq ft
Entrenchment Ratio:	5.64	
Width to Depth Ratio:	11.7	
Rosgen Stream Classification:	E 4b	


Appendix C – Photo Log & RBP









RBP and Ell Calculator

(Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph**

Project ID: East Fork Little Sandy Stream Restoration

Stream/Reach: East Fork Little Sandy River Main Stem

Assessment Objectives: Determined Habitat Quality of Impacted Reach

RBP Habitat Parameters	Measure	Units		
1. Epifaunal Substrate	∞	(0-20)		
2. Embeddedness	13	(0-20)		
3. Velocity/Depth Regime	18	(0-20)		ų.
4. Sediment Deposition	8	(0-20)		
5. Channel Flow Status	8	(0-20)		
6. Channel Alteration	8	(0-20)		
7. Freq. Of Riffles (bends)	8	(0-20)		
8. Bank stability (both combined)	8	(0-20)		
9. Veg. Protection (both combined)	14	(0-20)		V
10. Riparian Width (both combined)	4	(0-20)		100
				31
Total Habitat Score	97		Subindex	

Habitat Integrity Index

Macroinvertebrate Data - Family Level (All Habitats)

% Mayflies (0-100) % Midges & Worms (0-100) # of EPT species sampled # of taxa sampled no units 14. % Chironomidae & Oligochaeta 11. Family Taxa Richness 12. Family EPT Richness 13. % Ephemeroptera

invertebrate Bioassessment	NA	no units	۷N

15. mFBI

Conductivity	203	microMHOs	0.85
EII	Model		
VΝ	(MBI + Habi	(MBI + Habitat Integrity + Conduct	Conductivity)
77.0	1-1 1-1: -1-1 /	(

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.85 0.87 Assessment Objectives: Predicted Final Habitat Quality of Restored Reach Habitat Integrity + Conductivity % Mayflies (0-100) # of taxa sampled (0-20)(0-20) (0-20)(0-20)(0-20)(0-20)(0-20)no units no units Stream/Reach: East Fork Little Sandy River Main Stem Macroinvertebrate Data - Family Level (All Habitats) Measure 16 162 15 18 16 203 4 19 16 18 4 Project ID: East Fork Little Sandy Restoration Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index 98.0 ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

RBP and Ell Calculator

(Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6)

Project ID: East Fork Little Sandy Stream Restoration

Stream/Reach: Little East Fork River R1

Assessment Objectives: Determined Habitat Quality of Impacted Reach

RBP Habitat Parameters	Measure	
1. Epifaunal Substrate	8	
2. Embeddedness	3	
3. Velocity/Depth Regime	18	

	18	8	8	8	8	ed) 2	ined) 1	•
z. Embeddedness	3. Velocity/Depth Regime	4. Sediment Deposition	5. Channel Flow Status	6. Channel Alteration	7. Freq. Of Riffles (bends)	8. Bank stability (both combined)	9. Veg. Protection (both combined)	

Measure Units	8 (0-20)	3 (0-20)	(0-20)	8 (0-20)	8 (0-20)	8 (0-20)	8 (0-20)	(0-20)	(0-20)	4 (0-20)	
RBP Habitat Parameters Me	1. Epifaunal Substrate	2. Embeddedness	3. Velocity/Depth Regime	4. Sediment Deposition	5. Channel Flow Status	6. Channel Alteration	7. Freq. Of Riffles (bends)	8. Bank stability (both combined)	9. Veg. Protection (both combined)	10. Riparian Width (both combined)	

	K I			1
			0	1
	Z. To			No.
13.				
12.0			1	
Photograph				
Photo	T. N	*1		
l ,				

Habitat Integrity Index

Total Habitat Score

Macroinvertebrate Data - Family Level (All Habitats)

Subindex

8

0.10

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	
15. mFBI	no units

NA no units NA	lacroinvertebrate Bioassessment
----------------	---------------------------------

Sonductivity	203 n	microMHOs	0.85
III	Model		
NA	(MBI + Habit	(MBI + Habitat Integrity + Conductivit	Conductivity)
0.47	(Habitat Inte	Habitat Integrity + Conductivity	ıctivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.85 0.87 Habitat Integrity + Conductivity Assessment Objectives: Predict Final Habitat Quality of Restored Reach % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 15 162 16 16 16 10 18 16 203 13 17 Model Stream/Reach: Little East Fork River R1 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index 98.0 ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

RBP and Ell Calculator

(Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) Photograph

Project ID: East Fork Little Sandy Stream Restoration

Stream/Reach: Little East Fork River Reach 2

Assessment Objectives: Determined Habitat Quality of Impacted Reach

RBP Habitat Parameters	Measure	Units
1. Epifaunal Substrate	8	(0-20)
2. Embeddedness	3	(0-20)
3. Velocity/Depth Regime	18	(0-20)
4. Sediment Deposition	8	(0-20)

		2
1. Epifaunal Substrate	8	(0-20)
2. Embeddedness	3	(0-20)
3. Velocity/Depth Regime	18	(0-20)
4. Sediment Deposition	8	(0-20)
5. Channel Flow Status	8	(0-20)
6. Channel Alteration	8	(0-20)
7. Freq. Of Riffles (bends)	8	(0-20)
8. Bank stability (both combined)	2	(0-20)
9. Veg. Protection (both combined)	14	(0-20)
10. Riparian Width (both combined)	2	(0-20)

E TO				1
大块大				4
文章	外海			200
A LOCAL				
学学发				
			生化物	
		TOTAL S		7
	15/14	EI M	. 17 5	Free Contract
				E
V 1-17 13		學》以是	1	
	學的多		1	
		XX.	47	190
				_

Total Habitat Score	62	Subindex
Habitat Integrity Index		0.10

Macroinvertebrate Data - Family Level (All Habitats)

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	% Midges & Worms (0-100)
15. mFBI	no units

oinvertebrate Bioassessment N	NA no unit	S	Ϋ́
-------------------------------	------------	---	----

NA (MBI + Habitat Integrity + Conductivity)	0 47	ntegrity
	(MBI + Habitat Integrity	odel

EII	Model
NA	(MBI + Habitat Integrity + Conductivity)
0.47	(Habitat Integrity + Conductivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.50 0.85 Habitat Integrity + Conductivity Assessment Objectives: Predict Final Habitat Quality of Restored Reach % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 19 13 140 4 203 4 19 16 10 12 10 Model Stream/Reach: Little East Fork River Reach 2 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

(Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) ٨ **Photograph** RBP and Ell Calculator Subindex 0.10 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20) (0-20) (0-20) (0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 10 9 ∞ ∞ ∞ $|\infty$ ∞ 2 က ∞ 2 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Little East Fork Trib 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition 5. Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score 2. Embeddedness

Habitats)	
H	
Level (
amily	
ata - F	
rate D	
vertek	
acroin	

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	% Midges & Worms (0-100)
15. mFBI	no units

Macroinvertebrate Bioassessment	NA	no units	NA
Conductivity	203	microMHOs	98'0

EII	Model
NA	(MBI + Habitat Integrity + Conductivity)
7 V U	/ Habitat Integrity + Conductivity)

	Model
NA	(MBI + Habitat Integrity + Conductivity)
0.47	(Habitat Integrity + Conductivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** Photograph RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.83 0.85 Habitat Integrity + Conductivity Assessment Objectives: Predict Final Habitat Quality of Impacted Reach % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 15 160 15 19 16 10 18 16 203 16 13 Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Stream/Reach: Little East Fork Trib Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.18 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20) (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 108 13 15 14 ဝ ∞ $|\infty|$ ∞ ∞ ∞ 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Tributary 1 Reach 1 8. Bank stability (both combined) 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Channel Alteration Habitat Integrity Index Total Habitat Score **Embeddedness**

Macroinvertebrate Data - Family Level (All Habitats)

11. Family Taxa Richness
12. Family EPT Richness
13. % Ephemeroptera
14. % Chironomidae & Oligochaeta
15. mFBI
10 units

Macroinvertebrate Bioassessment NA no units NA

 Conductivity
 203
 microMHOs
 0.85

 EII
 Model

 NA
 (MBI + Habitat Integrity + Conductivity)

 0.51
 (Habitat Integrity + Conductivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Downstream Photograph Upstream Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.88 0.85 Assessment Objectives: Predicted Final Habitat Quality of Restored Reach Habitat Integrity + Conductivity % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 15 163 15 20 16 16 16 203 14 18 16 17 Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Stream/Reach: Tributary 1 Reach 1 Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.25 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 115 19 13 15 4 4 ∞ $|\infty|$ ∞ ∞ ∞ 10. Riparian Width (both combined) Stream/Reach: Tributary 1 Reach 2 9. Veg. Protection (both combined) 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score **Embeddedness**

Macroinvertebrate Data - Family Level (All Habitats)

11. Family Taxa Richness
12. Family EPT Richness
13. % Ephemeroptera
14. % Chironomidae & Oligochaeta
15. mFBI
10 units

Macroinvertebrate Bioassessment NA no units NA

Conductivity	203	microMHOs	0.85
	Model		
NA	(MBI + Hat	(MBI + Habitat Integrity + Conductivit	Conductivity)
	- +-+:4- /	(this site of the second of t	Oak in the .)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Downstream Photograph Upstream Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 06.0 0.85 Assessment Objectives: Predicted Final Habitat Quality of Restored Reach Habitat Integrity + Conductivity % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 164 18 16 19 16 18 16 203 14 12 Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Stream/Reach: Tributary 1 Reach 2 Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.10 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 10 9 12 20 94 ω 9 ∞ ∞ $|\infty$ 4 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Tributary 1 Reach 3 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score 2. Embeddedness

_	
Habitats)	
M	
Level	
· Family	
a - 1	
Data	
rate	
teb	
acroinver	

11. Family Taxa

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	% Midges & Worms (0-100)

no units

15. mFBI

ΑN	
no units	
ΑN	
Macroinvertebrate Bioassessment	

Sonductivity	203	microMHOs	0.85
П	Model		
NA	(MBI + Hat	(MBI + Habitat Integrity + Conductivity	Conductivity)
0.47	(Habitat In	Habitat Integrity + Conductivity	uctivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Downstream Photograph Upstream Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.85 0.87 Assessment Objectives: Predicted Final Habitat Quality of Restored Reach Habitat Integrity + Conductivity % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 15 9 8 162 16 16 15 203 16 Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Stream/Reach: Tributary 1 Reach 3 Macroinvertebrate Bioassessment 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index 98.0 ΥN Ш Total Habitat Score **Embeddedness** Conductivity 5.

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.10 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20) (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 15 13 15 66 ω ω $|\infty|$ 8 ∞ 8 8 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 8. Bank stability (both combined) Stream/Reach: Tributary 1A 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score 2. Embeddedness

_
핥
띍
<u>a</u>
픠
⊴
ᇹ
6
긥
訇
au
뛰
ţ
Data
e
rat
힐
er
2
9
ac

# of taxa sampled	# of EPT species sampled		Midges & Worms (0-100)
11. Family Taxa Richness	12. Family EPT Richness	13. % Ephemeroptera	14. % Chironomidae & Oligochaeta

no units

VΑ	
no units	
NA	
Macroinvertebrate Bioassessment	

onductivity .	ESS THIS SIMILES	60.0
EII	Model	
NA	(MBI + Habitat Inte	(MBI + Habitat Integrity + Conductivity)
6 7 7	(

5	
NA	(MBI + Habitat Integrity + Conductivity)
0.47	(Habitat Integrity + Conductivity)

PHOTO NOT AVAILABLE PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Downstream Photograph Upstream Photograph** RBP and Ell Calculator % Midges & Worms (0-100) Subindex (MBI + Habitat Integrity + Conductivity) # of EPT species sampled 0.85 0.57 Assessment Objectives: Predicted Final Habitat Quality of Impacted Reach Habitat Integrity + Conductivity % Mayflies (0-100) # of taxa sampled (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)(0-20)no units no units Project ID: East Fork Little Sandy Stream Restoration Macroinvertebrate Data - Family Level (All Habitats) Measure 15 144 15 16 15 15 203 16 4 14 4 Model 10. Riparian Width (both combined) 9. Veg. Protection (both combined) 14. % Chironomidae & Oligochaeta Macroinvertebrate Bioassessment 8. Bank stability (both combined) Stream/Reach: Tributary 1A 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime 11. Family Taxa Richness 12. Family EPT Richness **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate 13. % Ephemeroptera Habitat Integrity Index ΑN Ш Total Habitat Score **Embeddedness** Conductivity 5.

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.10 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20) (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 9 18 13 9 94 9 က က ∞ က 4 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Tributary 2 Reach 1 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score **Embeddedness**

Macroinvertebrate Data - Family Level (All Habitats)

11. Family Taxa Richness
12. Family EPT Richness
13. % Ephemeroptera
14. % Chironomidae & Oligochaeta
15. mFBI
10 units

Macroinvertebrate Bioassessment NA no units NA

onductivity	203	MICROWINUS	0.85
III	Model		
NA	(MBI + Ha	(MBI + Habitat Integrity + Conductivit	Conductivity)
0.47	(Habitat Ir	(Habitat Integrity + Conductivity	uctivity)

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Upstream Photograph** RBP and Ell Calculator Subindex 0.62 Assessment Objectives: Predicted Final Habitat Quality of RestoredReach (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Units (0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 18 15 15 18 18 15 147 16 ∞ ∞ 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Tributary 2 Reach 1 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score Embeddedness

Habitats)	
(AII +	
Level	
Family	
Data -	
tebrate	
acroinver	
10	ı

# of taxa sampled	# of EPT species sampled		Worms (0-100)
11. Family Taxa Richness	12. Family EPT Richness	13. % Ephemeroptera	14. % Chironomidae & Oligochaeta

no units

15. mFBI

۷N	
no units	
۷N	
Macroinvertebrate Bioassessment	

Conductivity	203 microMHOs	0.85
III	Model	
NA	(MBI + Habitat Integrity + Conductivity	conductivity)
0.40	(the state of the second of t	

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Photograph** RBP and Ell Calculator Subindex 0.10 Assessment Objectives: Determined Habitat Quality of Impacted Reach (0-20) (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure (2) 16 13 13 13 4 96 က 3 က 4 10. Riparian Width (both combined) Stream/Reach: Tributary 2 Reach 2 9. Veg. Protection (both combined) 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score 2. Embeddedness

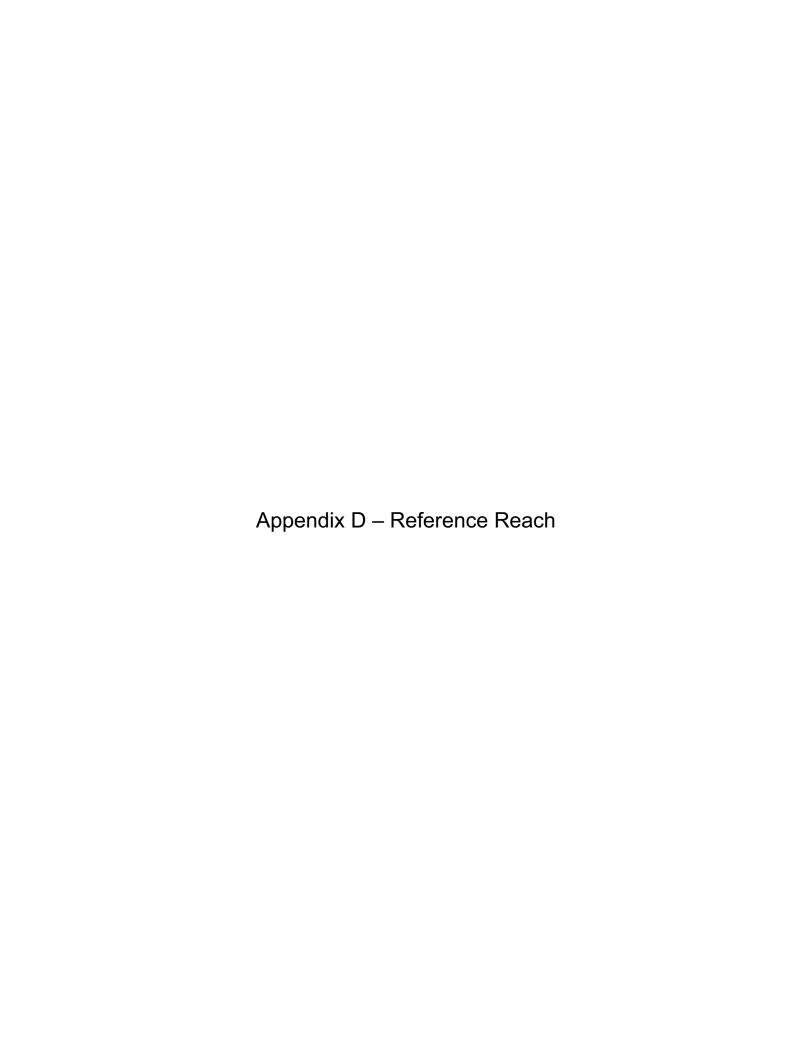
 Family Level (All Habitats)
≥
≥
mily
낊
٦
Data
orate
arte
acroinve

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	
15. mFBI	no units

Macroinvertebrate Bioassessment	NA	no units	ΝA
		1	
Conductivity	203	microMHOs	0.85

===	Model
VΑ	(MBI + Habitat Integrity + Conductivity)
0.47	/ Habitat Integrity + Conductivity)

PHOTO NOT AVAILABLE (Adapted from Ell Calculation for High Gradient Streams in Eastern Kentucky Coalfield Version 2002.6) **Upstream Photograph** RBP and Ell Calculator Subindex 0.88 Assessment Objectives: Predicted Final Habitat Quality of Restored Reach (0-20) (0-20)(0-20)(0-20)(0-20)(0-20)(0-20)Project ID: East Fork Little Sandy Stream Restoration Measure 163 18 16 16 18 18 16 12 17 10. Riparian Width (both combined) 9. Veg. Protection (both combined) Stream/Reach: Tributary 2 Reach 2 8. Bank stability (both combined) 6. Channel Alteration 7. Freq. Of Riffles (bends) 3. Velocity/Depth Regime **RBP Habitat Parameters** Sediment Deposition Channel Flow Status 1. Epifaunal Substrate Habitat Integrity Index Total Habitat Score 2. Embeddedness


_
핥
띍
<u>a</u>
픠
⊴
ᇹ
6
긥
訇
au
뛰
ţ
Data
e
rat
힐
er
2
9
ac

11. Family Taxa Richness	# of taxa sampled
12. Family EPT Richness	# of EPT species sampled
13. % Ephemeroptera	% Mayflies (0-100)
14. % Chironomidae & Oligochaeta	% Midges & Worms (0-100)

no units

Macroinvertebrate Bioassessment	NA	no units	NA
Conductivity	203	micro///HOc	0.85

≣	Model
Ϋ́	(MBI + Habitat Integrity + Conductivity)
0.87	/ Habitat Integrity + Conductivity)

River Name: EF Little Sandy River
Reach Name: Restored Reach <-- This is a Reference Reach

Drainage Area: 10 sq mi Kentucky Lawrence State: County:

Latitude: Longitude: 0

Survey Date: 08/13/2008

Valley Type:	Type VIII	
Valley Slope:	0.0017	ft/ft
Number of Channels:	Single	
width:	31.55	
Mean Depth:	1.49	ft
Flood-Prone Width:	59.86	ft
Channel Materials D50:	0.65	mm
Water Surface Slope:	0.0015	ft/ft
Sinuosity:	1.1	
Discharge:	156	cfs
Velocity:	2.89	
Cross Sectional Area:	46.85	sq ft
Entrenchment Ratio:	1.9	•
Width to Depth Ratio:	21.17	
Rosgen Stream Classification:	В 5с	

River Name: EF Little Sandy River Reach Name: Restored Reach Sample Name: Riffle XS-1 08/13/2008

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 8 3 1 1 9 12 26 18 17 4 1 0 0 0 0 0 0	0.00 0.00 0.00 8.00 3.00 1.00 1.00 9.00 12.00 26.00 18.00 17.00 4.00 1.00 0.	0.00 0.00 0.00 8.00 11.00 12.00 13.00 22.00 34.00 60.00 78.00 95.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	4.57 8.13 10.03 18.33 22.6 45 0 12 88 0 0		

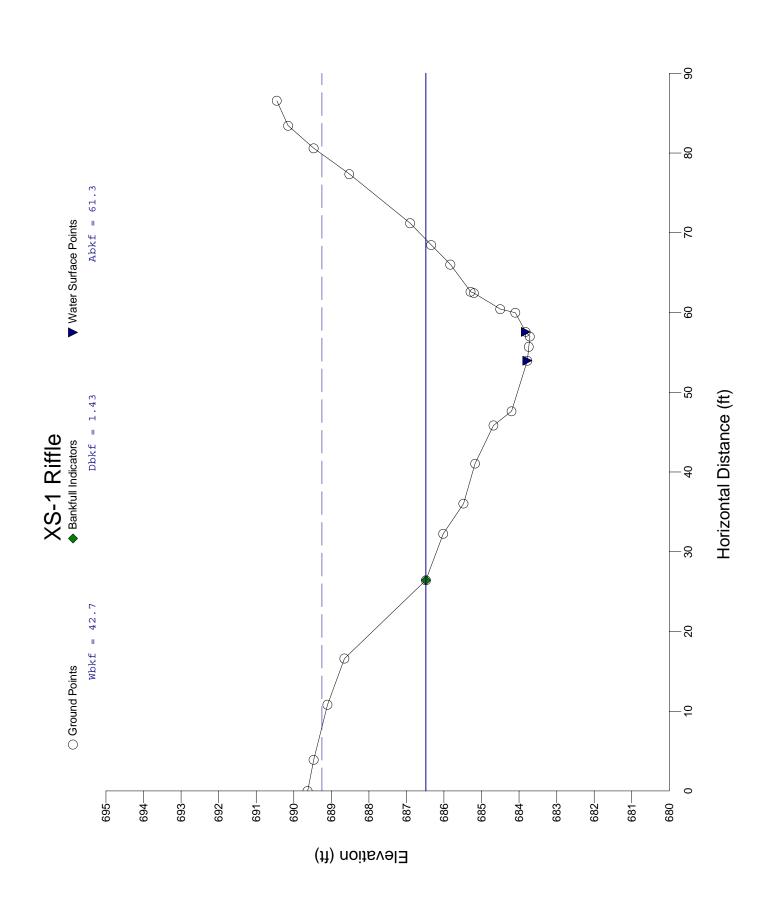
Total Particles = 100.

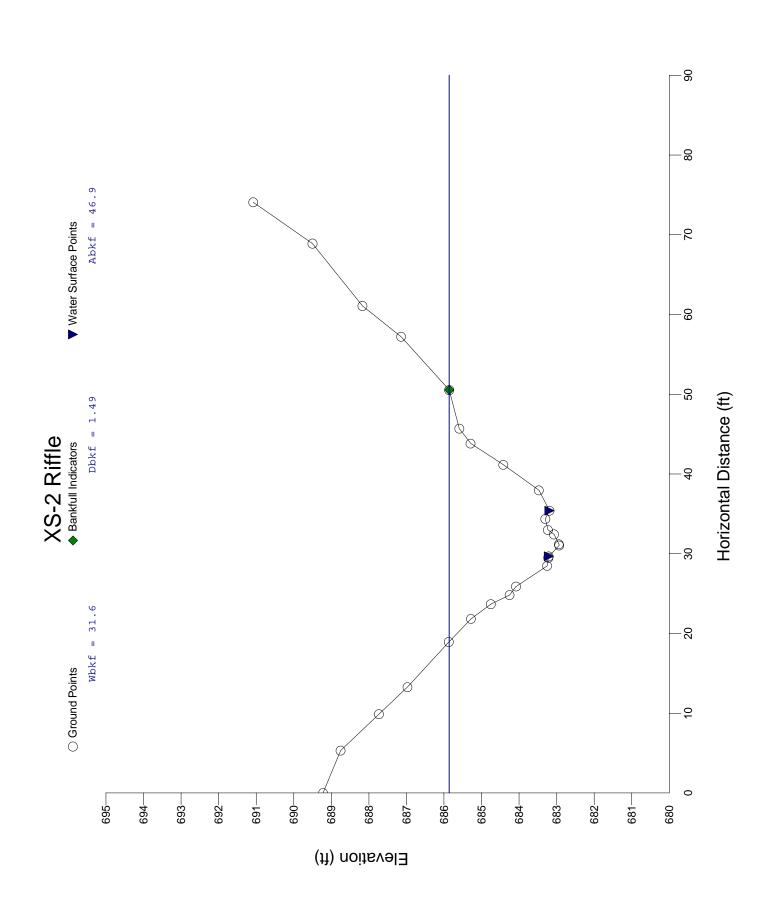
EF Little Sandy River Restored Reach River Name:

Reach Name: Bar Sample 08/25/2008 Sample Name: Survey Date:

SIEVE (mm)	NET WT
16 8 4 2 0.85 0.6 0.3 0.15 0.075 PAN	9.46 224.59 538.95 749.79 2068.35 1730.1 1347.67 92.19 16.3 9.58
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.52 0.73 0.96 3.18 7.28 10.63 0 77.47 22.53

Total Weight = 6795.0000.


Largest Surface Particles:


Weight Size(mm) 10.63 Particle 1: Particle 2: 3.86 10.6

River Name: Flagg Spring Creek
Reach Name: No 2 (B4c)
Sample Name: RIFFLE
Survey Date: 02/27/2003

Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 0 5 5 9 8 7 11 11 10 1 0 0 0 0 0 0 0	0.00 0.00 0.00 7.46 7.46 13.43 11.94 10.45 16.42 14.93 1.49 0.00 0	0.00 0.00 0.00 7.46 14.93 28.36 40.30 50.75 67.16 83.58 98.51 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.08 3.11 5.58 11.43 14.9 22.6 0 28.36 71.64 0		

Total Particles = 67.

River Name: Hyatts Fork (C4)
Reach Name: Hyatts Fork RR <-- This is a Reference Reach
Drainage Area: 1.8 sq mi
State: Kentucky
County: Pulaski
Latitude: 0

Latitude: 0 Longitude:

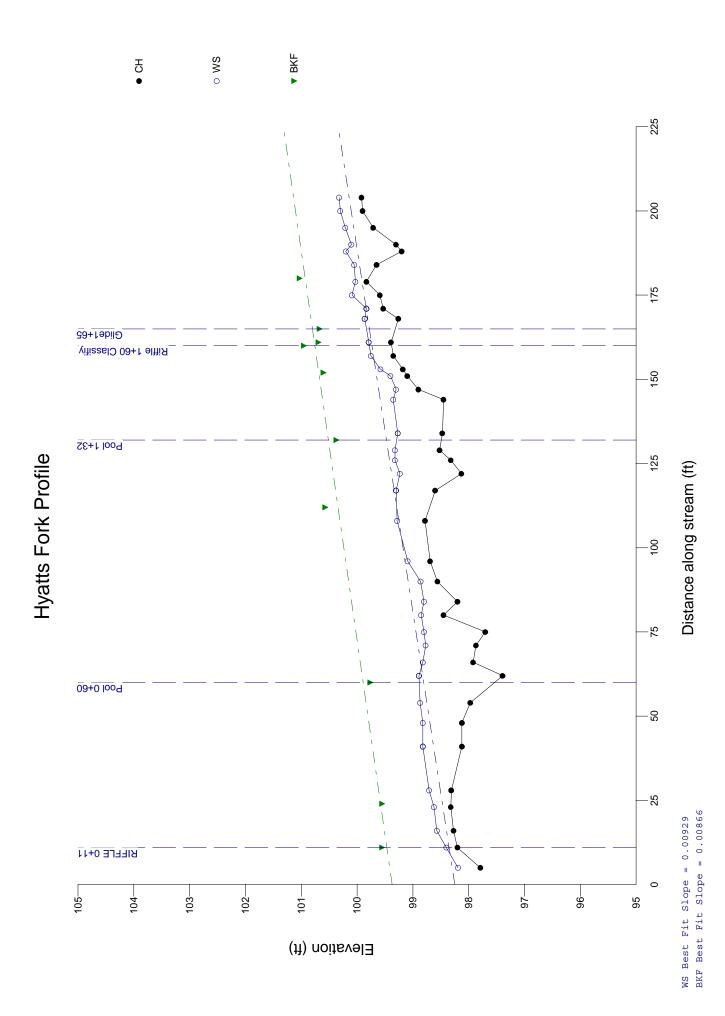
Survey Date: 01/27/2003

Valley Type: Valley Slope: Number of Channels:	Type VIII 0.0124	ft/ft
Width:	Single 18.67	ft
Mean Depth:	1.4	
Flood-Prone Width:	150	
Channel Materials D50:	25.73	
Water Surface Slope:	0.00868	ft/ft
Sinuosity:	1.1	
Discharge:	100	
Velocity:		fps
Cross Sectional Area:	26.15	sq ft
Entrenchment Ratio:	8.03	
Width to Depth Ratio:	13.34	
Rosgen Stream Classification:	C 4	

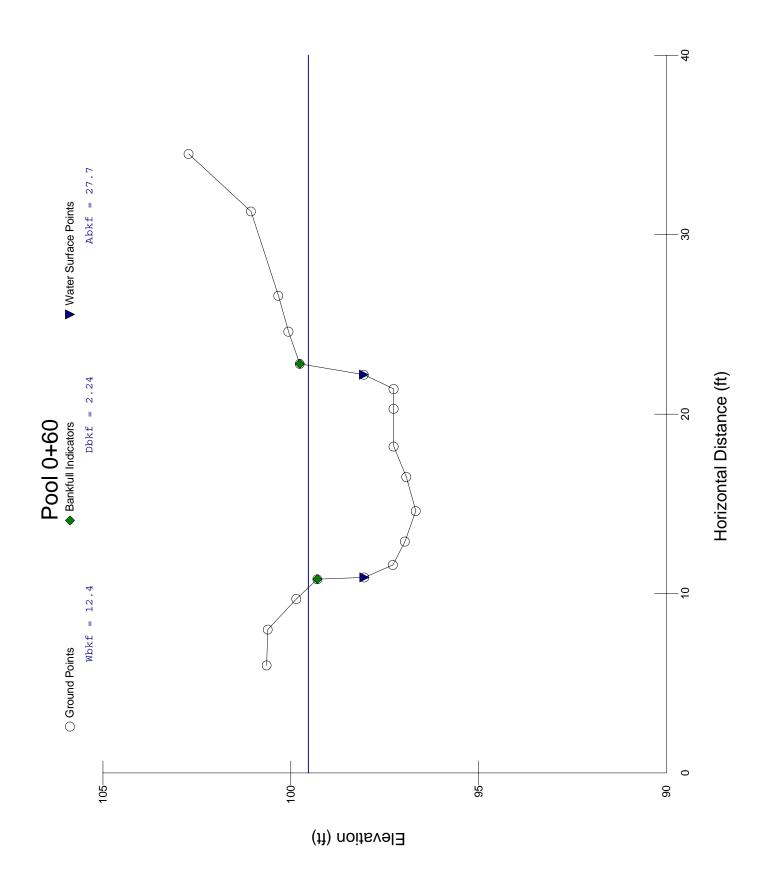
River Name: Hyatts Fork (C4)
Reach Name: Hyatts Fork RR
Sample Name: Rifle
Survey Date: 01/27/2003

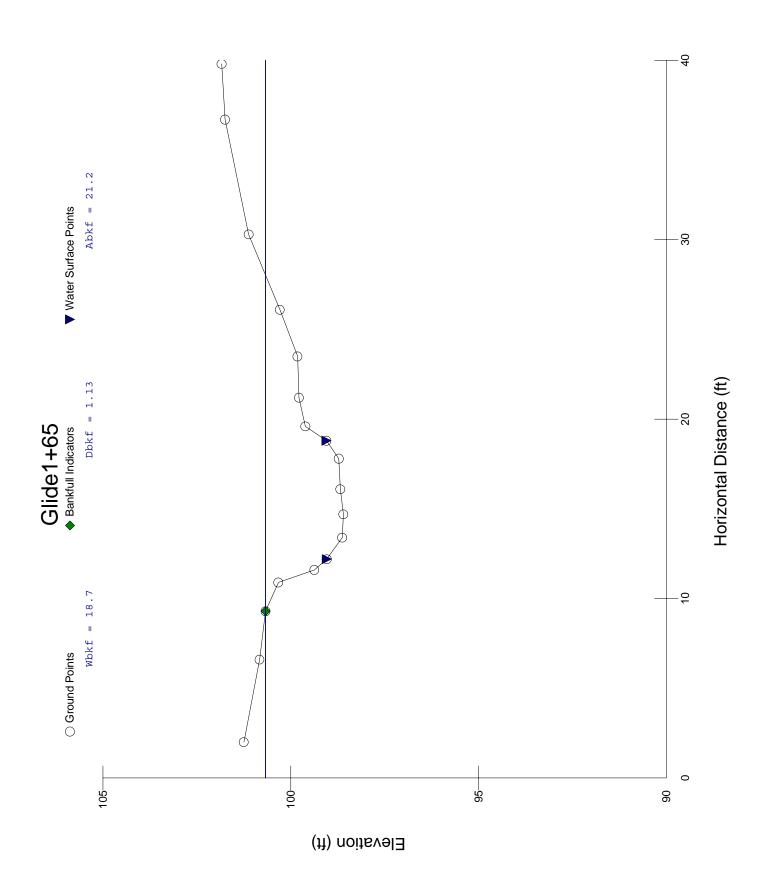
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 0 0 1 2 7 4 5 9 11 24 15 13 6 5 3 3 2 0 0 0	0.00 0.00 0.00 0.00 0.00 0.91 1.82 6.36 3.64 4.55 8.18 10.00 21.82 13.64 11.82 5.45 4.55 2.73 2.73 1.82 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.91 2.73 9.09 12.73 17.27 25.45 35.45 57.27 70.91 82.73 88.18 92.73 95.45 98.18 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	10.38 22.3 28.87 70.06 171.4 361.99 0 0.91 81.82 15.45 1.82 0		

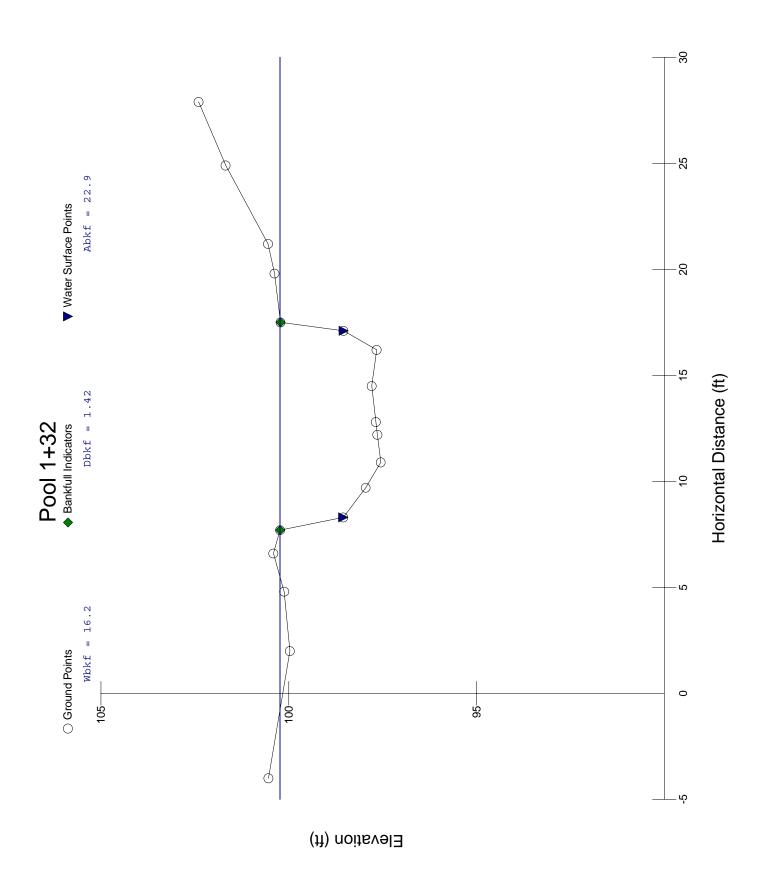
Total Particles = 110.

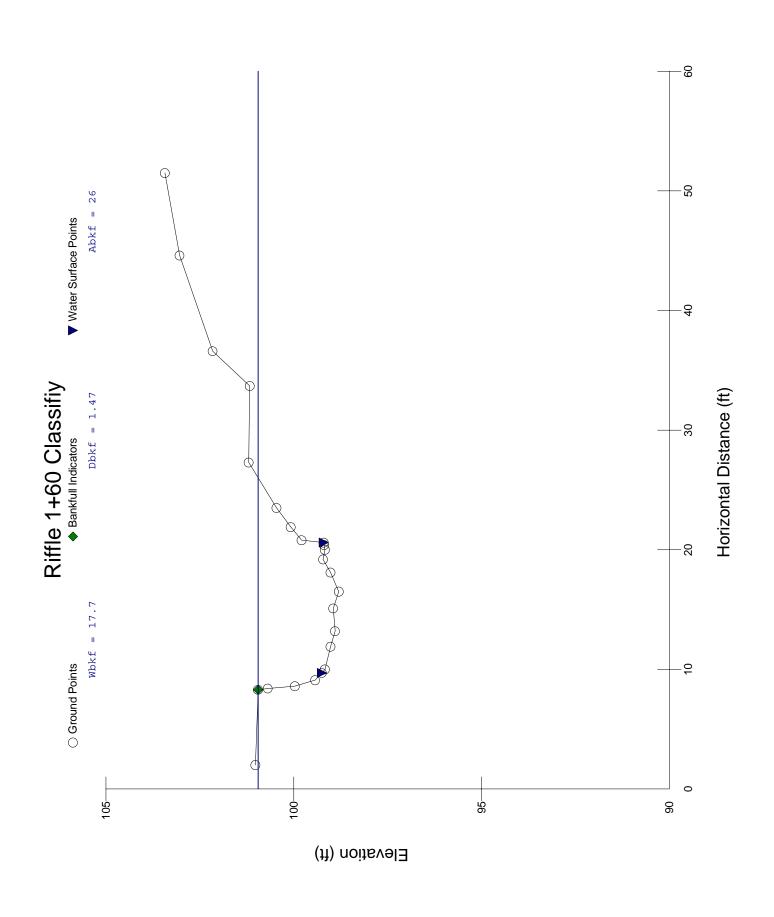



River Name: Hyatts Fork (C4)
Reach Name: Hyatts Fork RR
Sample Name: Reach Average
Survey Date: 01/27/2003




Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 0 2 0 0 3 6 5 6 4 21 18 11 9 7 7 7 4 2 1 0 0 0	0.00 0.00 0.00 1.89 0.00 2.83 5.66 4.72 5.66 3.77 19.81 16.98 10.38 8.49 6.60 6.60 3.77 1.89 0.94 0.00 0.00 0.00	0.00 0.00 1.89 1.89 1.89 4.72 10.38 15.09 20.75 24.53 44.34 61.32 71.70 80.19 86.79 93.40 97.17 99.06 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	8.53 19.49 25.73 79.01 150.07 361.99 0 1.89 78.3 18.87 0.94		


Total Particles = 106.



River Name: Flagg Spring Creek
Reach Name: No 2 (B4c) <-- This is a Reference Reach
Drainage Area: 0.092 sq mi

Kentucky Campbell State: County:

Latitude: Longitude:

Survey Date: 02/13/2003

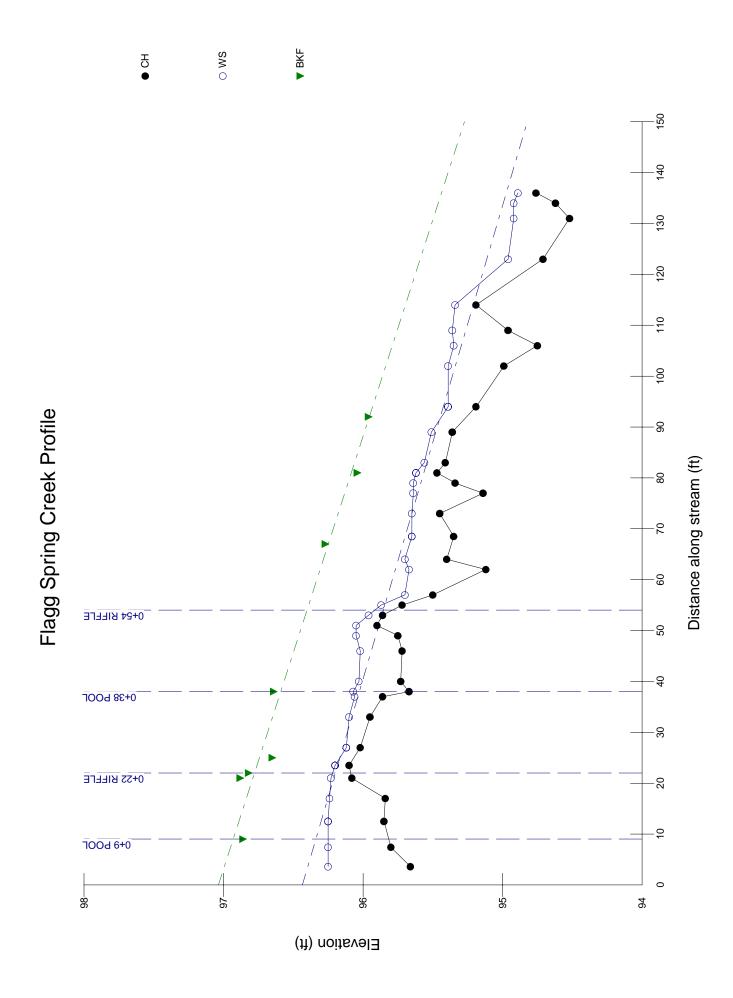
Valley Type:	Type VIII
Valley Slope:	0.0141 ft/ft
Number of Channels:	Single
width:	6.19 ft
Mean Depth:	0.52 ft
Flood-Prone Width:	12.49 ft
Channel Materials D50:	3.1 mm
Water Surface Slope:	0.01163 ft/ft
Sinuosity:	1.215
Discharge:	0 cfs
Velocity:	0 fps
Cross Sectional Area:	3.21 sq ft
Entrenchment Ratio:	2.02
Width to Depth Ratio:	11.9
Rosgen Stream Classification:	В 4с

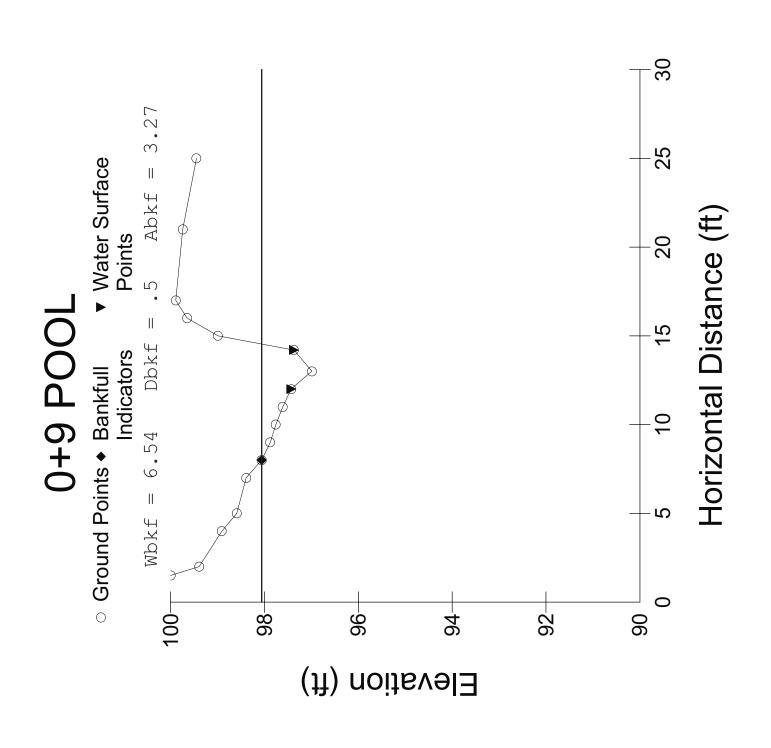
River Name:

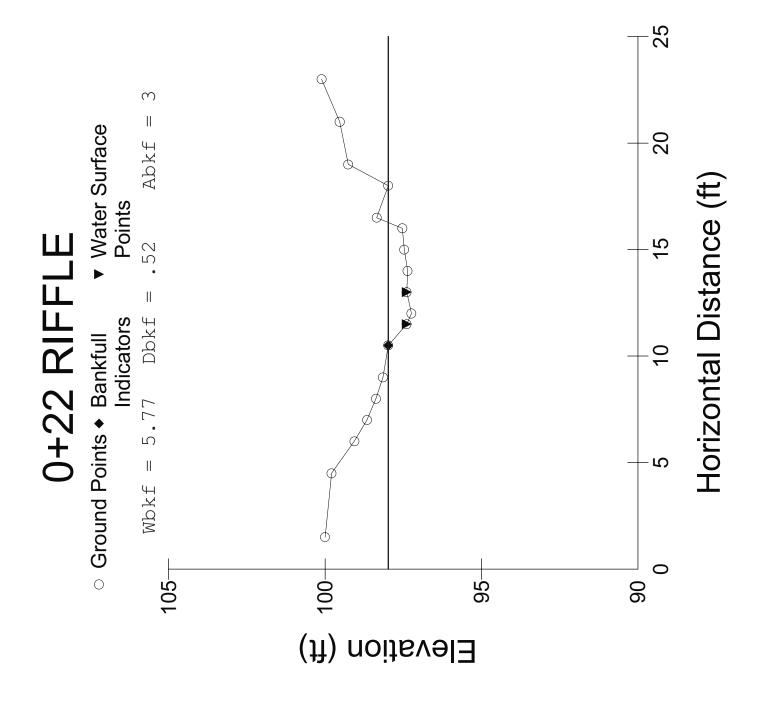
Flagg Spring Creek No 2 (B4c) BAR SAMPLE 02/27/2003 Reach Name: Sample Name: Survey Date:

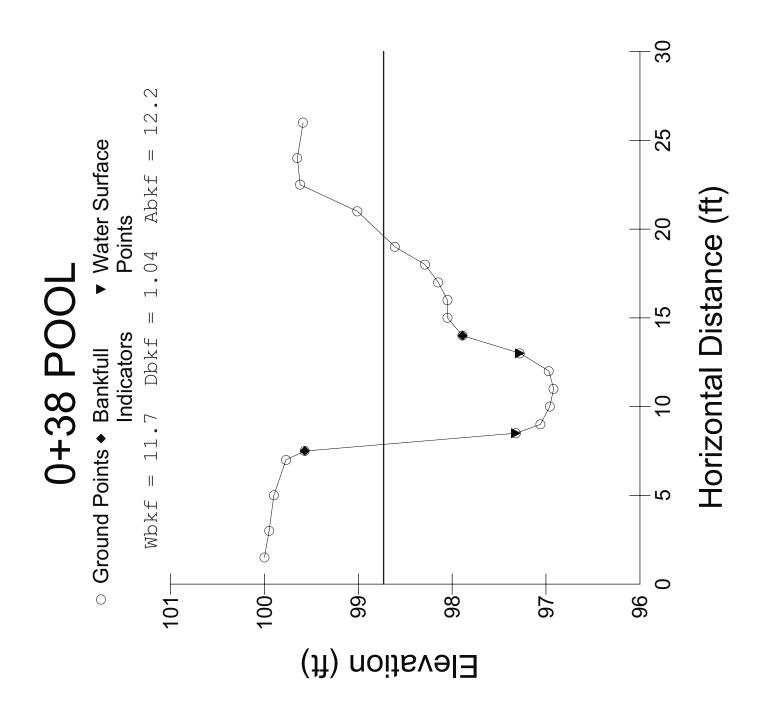
SIEVE (mm)	NET WT
12.5 6.3 4.75 2 0.425 0.15 0.075 PAN	27.41 427.1 553.3 719.6 130.25 122.83 34.6 384.91
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm)	0 2.64 4.02 7.32 11.16
Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0 28.02 70.09 -0.63 1.88 0.63

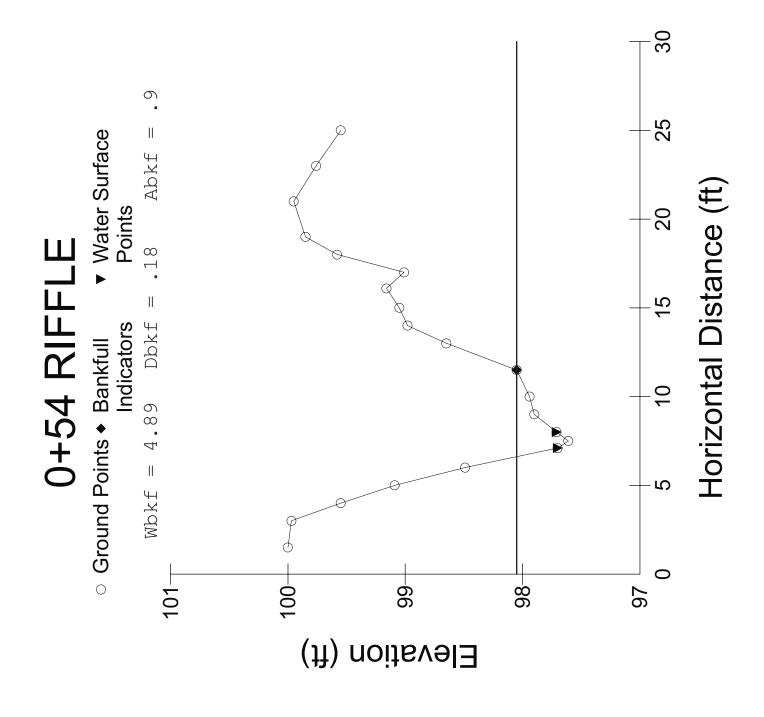
Total Weight = 2400.0000.


Largest Surface Particles:
Size(mm) Weight


Particle 1: Particle 2:


River Name: Flagg Spring Creek
Reach Name: No 2 (B4c)
Sample Name: REACH
Survey Date: 02/27/2003


Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 1 1 1 4 14 20 7 9 1 2 2 0 1 0 0 0 0 0 0	0.00 0.00 1.61 1.61 6.45 22.58 32.26 11.29 14.52 1.61 3.23 3.23 0.00 1.61 0.00 0.	0.00 0.00 1.61 3.23 9.68 32.26 64.52 75.81 90.32 91.94 95.16 98.39 98.39 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	1.28 2.17 3.1 7 15.77 45 0 32.26 67.74 0		


Total Particles = 62.

River Name: Lower Brier Creek (C4b)
Reach Name: Reach 1 <-- This is a Reference Reach
Drainage Area: 0.24 sq mi

Kentucky State: County: Adair
Latitude: 36.70556
Longitude: 84.21806
Survey Date: 09/04/2003

Valley Type:	Type VIII	
Valley Slope:	0.0263	ft/ft
Number of Channels:	Single	
Width:	11.25	ft
Mean Depth:	0.87	ft
Flood-Prone Width:	200	ft
Channel Materials D50:	26.83	mm
Water Surface Slope:	0.02288	ft/ft
Sinuosity:	1.15	
Discharge:	37	cfs
Velocity:	0	fps
Cross Sectional Area:		sq ft
Entrenchment Ratio:	17.78	•
Width to Depth Ratio:	12.93	
Rosgen Stream Classification:	C 4b	

River Name: Lower Brier Creek (C4b)
Reach Name: Reach 1

Reach Name: Reach 1 Sample Name: bar sample Survey Date: 09/04/2003

SIEVE (mm)	NET WT
75 37.5 25 16 9.5 4.75 2 0.425 0.15 0.075 PAN	1220.32 2813.53 1984.62 1579.9 1680.83 1914.08 1894.44 2222.12 1153.41 728.16 136.49
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.96 4.65 11.88 54.31 77.03 93 0 24.47 64.77 10.76

Total Weight = 17327.9000.

Largest Surface Particles:

Size(mm) Weight

Particle 1: 82 Particle 2: 93

River Name:
Reach Name:
Sample Name:
Survey Date:

Lower Brier Creek (C4b)
Reach 1
reach average
09/04/2003

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	12 2 3 0 1 0 3 5 4 7 5 7 10 14 10 12 7 4 1 0 0 0	11.21 1.87 2.80 0.00 0.93 0.00 2.80 4.67 3.74 6.54 4.67 6.54 9.35 13.08 9.35 11.21 6.54 3.74 0.93 0.00 0.00 0.00 0.00	11.21 13.08 15.89 16.82 16.82 19.63 24.30 28.04 34.58 39.25 45.79 55.14 68.22 77.57 88.79 95.33 99.07 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.56 11.72 26.83 78.9 126.08 255.99 11.21 5.61 60.75 22.43 0		

Total Particles = 107.

River Name:
Reach Name:
Sample Name:
Survey Date:

Lower Brier Creek (C4b)
Reach 1
xs 4 riffle
09/04/2003

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	3 0 2 2 4 1 4 6 6 3 7 6 11 15 11 13 10 6 0 0 0	2.73 0.00 1.82 1.82 3.64 0.91 3.64 5.45 5.45 2.73 6.36 5.45 10.00 13.64 10.00 11.82 9.09 5.45 0.00 0.00 0.00 0.00	2.73 2.73 4.55 6.36 10.00 10.91 14.55 20.00 25.45 28.18 34.55 40.00 50.00 63.64 73.64 85.45 94.55 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	4.45 16.54 32 86.81 132.29 180 2.73 8.18 62.73 26.36 0		

Total Particles = 110.

River Name:
Reach Name:
Sample Name:
Survey Date:

Lower Brier Creek (C4b)
Reach 1
xs 3 pool
09/04/2003

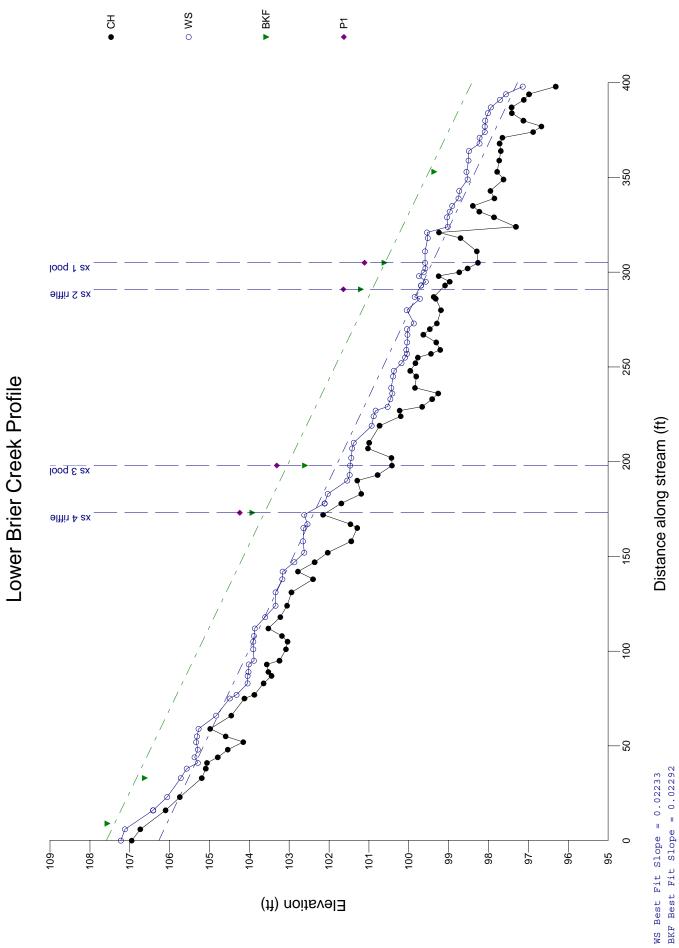
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	4 2 1 2 1 4 4 5 9 12 6 8 14 11 11 7 2 1 1 2 1 0 0	3.70 1.85 0.93 1.85 0.93 3.70 4.63 8.33 11.11 5.56 7.41 12.96 10.19 10.19 6.48 1.85 0.93 0.93 1.85 0.93 0.93 0.93 0.00 0.00 0.00	3.70 5.56 6.48 8.33 9.26 12.96 16.67 21.30 29.63 40.74 46.30 53.70 66.67 76.85 87.04 93.52 95.37 96.30 97.22 99.07 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	3.64 9.6 19.3 58.33 120.4 511.98 3.7 9.26 74.08 10.18 2.78		

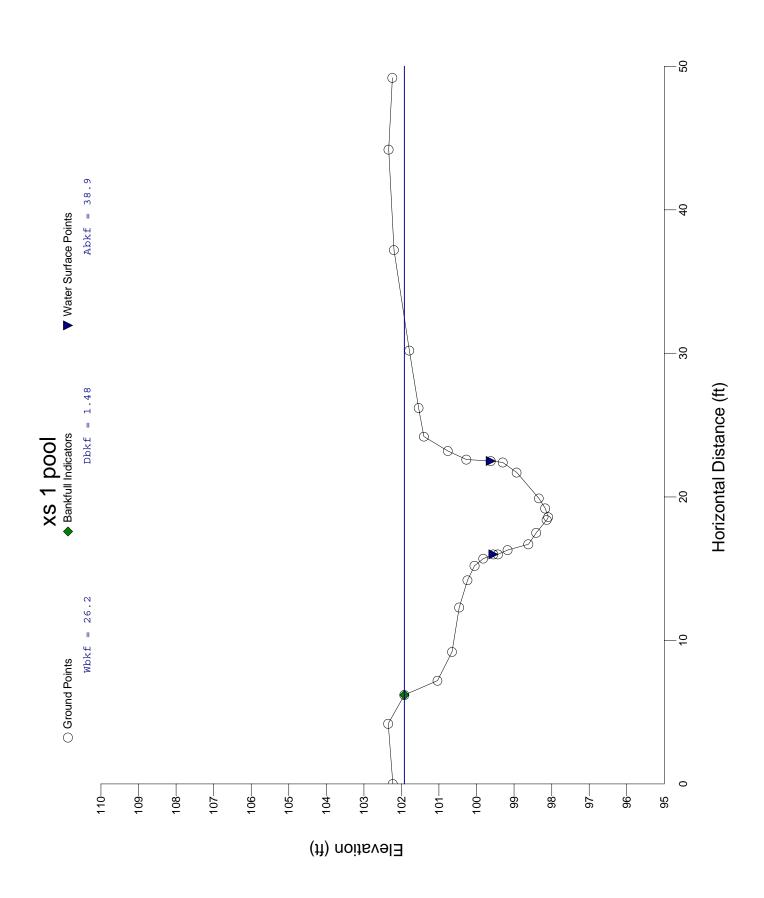
Total Particles = 108.

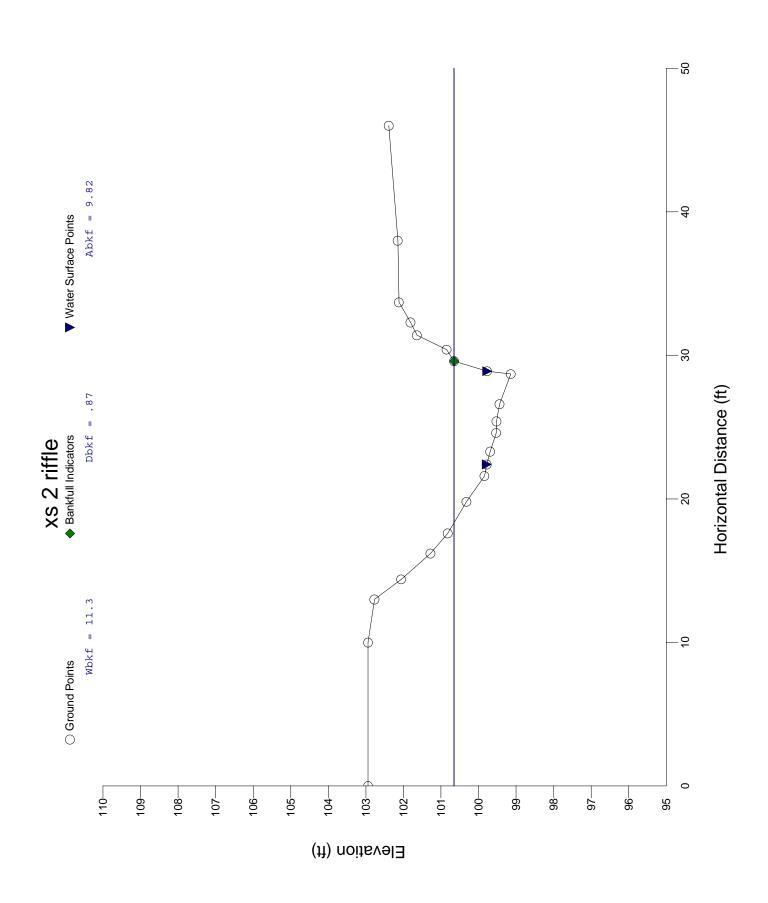
River Name:
Reach Name:
Sample Name:
Survey Date:

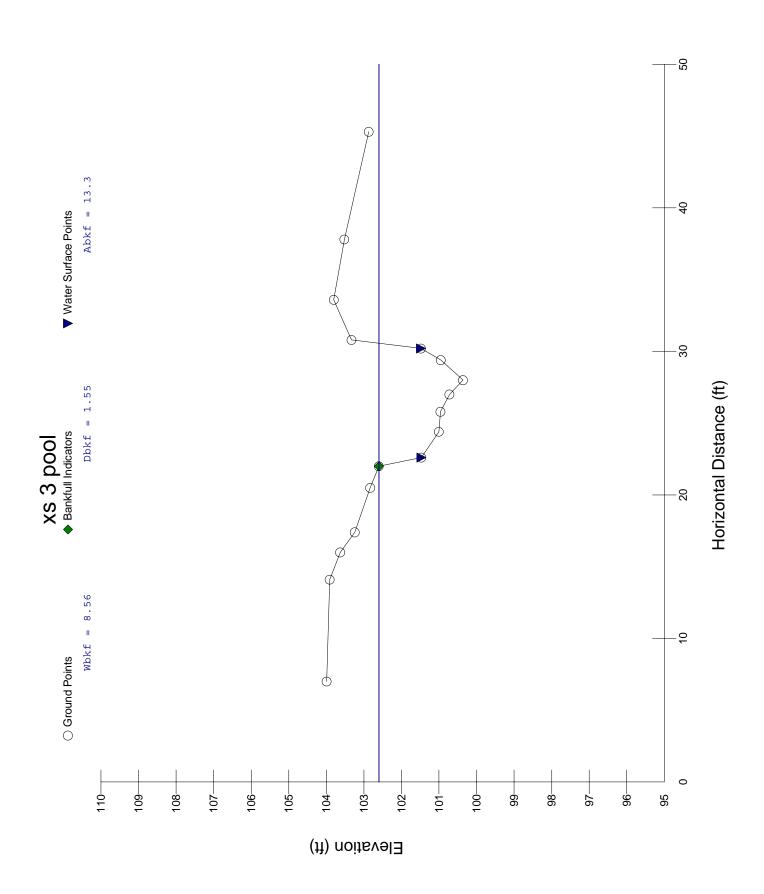
Lower Brier Creek (C4b)
Reach 1
xs 2 riffle
09/04/2003

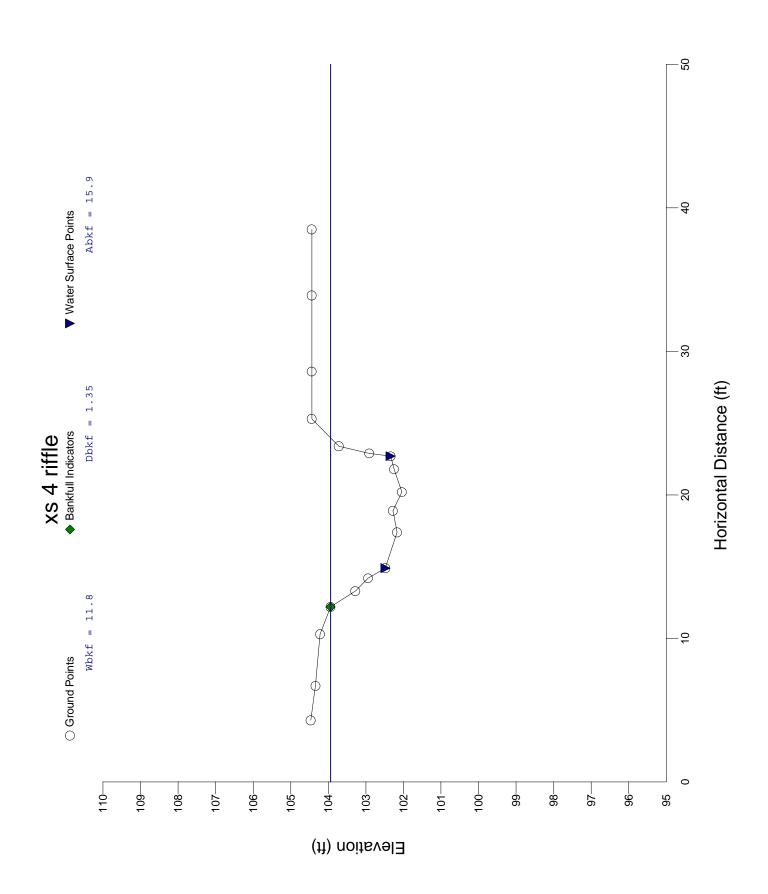
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 0 1 0 1 3 2 5 8 6 14 15 16 17 6 3 0 0 0 0 0 0	0.00 0.00 1.03 0.00 1.03 3.09 2.06 5.15 8.25 6.19 14.43 15.46 16.49 17.53 6.19 3.09 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 1.03 1.03 2.06 5.15 7.22 12.37 20.62 26.80 41.24 56.70 73.20 90.72 96.91 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	6.71 13.97 19.74 40.01 58.14 90 0 5.15 91.76 3.09 0		


Total Particles = 97.


River Name:
Reach Name:
Sample Name:
Survey Date:


Lower Brier Creek (C4b)
Reach 1
xs 1 pool
09/04/2003


Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	10 0 1 0 1 0 5 3 5 8 14 9 11 3 1 1 0 2 0 0	9.52 0.00 0.95 0.00 0.95 0.00 4.76 2.86 4.76 7.62 13.33 8.57 7.62 13.33 8.57 10.48 2.86 0.95 0.95 0.95 0.00 1.90 0.00 0.00	9.52 9.52 10.48 10.48 11.43 16.19 19.05 23.81 31.43 44.76 53.33 60.95 74.29 82.86 93.33 96.19 97.14 98.10 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	3.92 12.56 20.04 66.83 112.19 511.99 9.52 1.91 71.43 15.24 1.9		


Total Particles = 105.

Mitigation Credit and Value Table East Fork Little Sandy Stream Restoration Project Lawrence County, Kentucky

EDIT	
AM CF	
STRE/	

			_					_					
		Balance	(Credit - Debit) (ft)	2,842	1,018	477	94	216	482	263	53	98	126
		Credits	Œ	13811	4587	3747	528	1107	3226	1229	324	222	280
	Final	Length	Œ	4950	1644	1496	275	265	1725	199	379	644	310
After Impact		Predicted	Ratio	2.79	2.79	2.51	1.92	1.87	1.87	1.86	0.86	0.87	1.87
Aft		Predicted	≣	98.0	98.0	0.67	0.92	0.87	0.87	98.0	0.71	0.73	0.87
	Habitat	Integrity	Index	0.87	0.87	0.50	0.83	0.88	06.0	0.87	0.57	0.62	0.88
		Predicted	Quality	Excellent	Excellent	Average	Excellent	Excellent	Excellent	Excellent	Average	Average	Excellent
		Predicted	RPB score	162	162	140	160	163	164	162	144	147	163
		Debit	E	10969	3269	3271	434	891	2744	296	271	471	453
			Ratio	2.19	2.19	2.19	1.55	1.51	1.55	1.46	0.73	0.73	1.46
	Impact	Length	(feet)	2000	1627	1491	280	290	1770	199	371	644	310
			Initial Quality	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
			ᇳ	0.47	0.47	0.47	0.55	0.51	0.55	0.47	0.47	0.47	0.47
		Conductivity	Index	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Before Impact	Habitat	Integrity	Index	0.10	0.10	0.10	0.10	0.18	0.25	0.10	0.10	0.10	0.10
Before		Initial RBP	Score	26	81	6/	92	108	115	96	66	96	96
		-	Conductivity	203	203	203	203	203	203	203	203	203	203
		Type of	Impact	Natural Channel Design	Natural Channel Design	Stream Enhancement	Natural Channel Design	Stream Enhancement	Stream Enhancement				
		Flow	Regime	Perennial	Perennial I	Perennial	Intermittent	Intermittent	Intermittent	Intermittent 1	Ephemeral I	Ephemeral	Intermittent
			Reach	EFLS	LEF R1	LEF R2	LEF Trib	Trib 1 R1	Trib 1 R2	Trib 1 R3	Trib 1A	Trib2 R1	Trib2 R2

Total Net Stream Credits 5,656

Appendix F – NCD Data

River Name: EF Little Sandy River Reach Name: Reach 1 --Reference Reach--EF Little Sandy River; Restored Reach (B 5c) --Boundary Conditions--Drainage Area: 7 sq mi Valley Slope: 0.0022 ft/ft Bankfull Discharge: 205 cfs 48.36 sq ft Bankfull Cross Sectional Area: Mean Depth Calculation Tolerance: 0.1 ft --Sediment Data--Riffle Bed Material ID: 12.87 mm Riffle Bed Material D84: Riffle Bed Material D50: 5.61 mm Bar Sample ID: Bar Sample Dmax: 32.09 mm Bar Sample D50: 0.86 mm --Entrainment Options--Shields Entrainment Function ------NCD Results-------Alignment--Meander Wavelength: 294.12 ft Channel Length: 352.94 ft Sinuosity: 1.2 Radius of Curvature: Bankfull Slope: 66.42 ft 0.00183 Meander Belt Width: 94.57 ft Meander Width Ratio: Deflection Angle: .9 rad --Riffle Cross Sectional Properties--Width to Depth Ratio: 20.51 Entrenchment Ratio: 1.9 Floodprone Width: 59.83 ft Bankfull Width: 31.49 ft Bankfull Mean Depth: 1.54 ft Bankfull Velocity: 4.24 ft/s Bankfull Hydraulic Radius: 1.4 ft 0.16 lbs/sq ft Bankfull Shear Stress: Required Roughness (n): $0.0188 \text{ ft} \land (1/6)$ Entrainable Particle Size: 9.6 mm

Reference Reach :

--Rosgen Stream Classification--

B 5c

Proposed Reach : Existing Reach :	B 5c E 5
Sediment Transport Competenc	
Ratio - Riffle Slope / Bankful	11 Slope: 0.2
Ratio - D50bed / D50bar: Critical Dimensionless Shear S Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear S Required Mean Depth (2):	1.54 ft 5.720
Minimum Required Mean Depth:	1.54 ft

River Name: Little East Fork Reach Name: Reach 1 --Reference Reach--Hyatts Fork (C4); Hyatts Fork RR (C 4) --Boundary Conditions--Drainage Area: 1.9 sq mi Valley Slope: 0.0024 ft/ft Bankfull Discharge: 67 cfs 19 sq ft Bankfull Cross Sectional Area: 0.1 ft Mean Depth Calculation Tolerance: --Sediment Data--Riffle Bed Material ID: Riffle Bed Material D84: 43.42 mm 23.12 mm Riffle Bed Material D50: Bar Sample ID: Bar Sample Dmax: 24.19 mm Bar Sample D50: 3.42 mm --Entrainment Options--Shields Entrainment Function -----NCD Results-------Alignment--Meander Wavelength: 175.7 ft Channel Length: 209.08 ft Sinuosity: 1.19Radius of Curvature: Bankfull Slope: 40.22 ft 0.00202 Meander Belt Width: 54.97 ft Meander Width Ratio: 3.03 Deflection Angle: .88 rad --Riffle Cross Sectional Properties--17.34 Width to Depth Ratio: Entrenchment Ratio: 8.03 Floodprone Width: 145.74 ft 18.15 ft Bankfull Width: Bankfull Mean Depth: 1.05 ft Bankfull Velocity: 3.53 ft/sBankfull Hydraulic Radius: 0.94 ft 0.118 lbs/sq ft Bankfull Shear Stress: Required Roughness (n): $0.0182 \text{ ft} \land (1/6)$ 7.6 mm Entrainable Particle Size:

Reference Reach :

Proposed Reach : Existing Reach :	C 4 C 4	
Sediment Transport Competency		
Ratio - Riffle Slope / Bankfull Slope:		1.91
Ratio - D50bed / D50bar: Critical Dimensionless Shear Stress (1): Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear Stress (2): Required Mean Depth (2):		6.760 0.0158 1.02 ft 1.046 0.0369 2.39 ft
Minimum Required Mean Depth:	1.02 ft	

River Name: Trib-1 Reach Name: Reach 1 --Reference Reach--Flagg Spring Creek; No 2 (B4c) (B 4c) --Boundary Conditions--Drainage Area: 0.152 sq miValley Slope: 0.024 ft/ft Bankfull Discharge: 12.59 cfs Bankfull Cross Sectional Area: 3.17 sq ft Mean Depth Calculation Tolerance: 0.05 ft --Sediment Data--Riffle Bed Material ID: XS-2 38.5 mm Riffle Bed Material D84: 17.2 mm Riffle Bed Material D50: Bar Sample ID: Bar Sample Bar Sample Dmax: 51 mm 7.16 mm Bar Sample D50: --Entrainment Options--Shields Entrainment Function ------NCD Results-------Alignment--Meander Wavelength: 68 ft Channel Length: 73.44 ft Sinuosity: 1.08 Radius of Curvature: Bankfull Slope: 20.44 ft 0.02215 14.03 ft Meander Belt Width: Meander Width Ratio: 2.15 Deflection Angle: .61 rad --Riffle Cross Sectional Properties--Width to Depth Ratio: 13.38 Entrenchment Ratio: 2.03 Floodprone Width: 13.22 ft 6.51 ft Bankfull Width: Bankfull Mean Depth: 0.49 ft Bankfull Velocity: 3.97 ft/s0.42 ft 0.581 lbs/sq ft Bankfull Hydraulic Radius: Bankfull Shear Stress: Required Roughness (n): $0.0312 \text{ ft}^{(1/6)}$ Entrainable Particle Size: 34.6 mm

B 4c

Reference Reach :

Proposed Reach : Existing Reach :	B 4 B4
Sediment Transport Competency	
Ratio - Riffle Slope / Bankfull Slope:	2.82
Ratio - D50bed / D50bar: Critical Dimensionless Shear Stress (1): Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear Stress (2): Required Mean Depth (2):	2.402 0.0388 0.48 ft 2.965 0.0146 0.18 ft
Minimum Required Mean Depth: (0.48 ft

River Name: Trib-1 Reach Name: Reach 2 --Reference Reach--Flagg Spring Creek; No 2 (B4c) (B 4c) --Boundary Conditions--0.219 sq mi Drainage Area: Valley Slope: 0.0085 ft/ft Bankfull Discharge: 17.25 cfs
Bankfull Cross Sectional Area: 4.77 sq ft
Mean Depth Calculation Tolerance: 0.05 ft --Sediment Data--Riffle Bed Material ID: 38.5 mm 17.2 mm Riffle Bed Material D84: Riffle Bed Material D50: Bar Sample ID: Bar Sample Dmax: 51 mm 7.16 mm Bar Sample D50: --Entrainment Options--Shields Entrainment Function -----NCD Results-------Alignment--Meander Wavelength: 83.5 ft Channel Length: 95.19 ft Sinuosity: 1.14 Radius of Curvature: Bankfull Slope: 20.91 ft 0.00746 Meander Belt Width: 22.32 ft Meander Width Ratio: 2.63 Deflection Angle: .77 rad --Riffle Cross Sectional Properties--Width to Depth Ratio: 15.1 Entrenchment Ratio: 2.03 Floodprone Width: 17.23 ft Bankfull Width: 8.49 ft Bankfull Mean Depth: 0.56 ft Bankfull Velocity: 3.62 ft/s0.5 ft 0.233 lbs/sq ft Bankfull Hydraulic Radius: Bankfull Shear Stress: $0.0224 \text{ ft}^{(1/6)}$ Required Roughness (n): Entrainable Particle Size: 13.1 mm --Rosgen Stream Classification--

Reference Reach: B 4c

Proposed Reach : Existing Reach :	В 4c В 4c	
Sediment Transport Competency		
Ratio - Riffle Slope / Bankfull Sl	lope: 2.82	
Ratio - D50bed / D50bar: Critical Dimensionless Shear Stres Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear Stres Required Mean Depth (2):	1.44 2.965	
Minimum Required Mean Depth:	0.54 ft	

River Name: Trib-1 Reach Name: Reach 3 --Reference Reach--Hyatts Fork (C4); Hyatts Fork RR (C 4) --Boundary Conditions--Drainage Area: 0.3 sq mi Valley Slope: 0.004 ft/ft Bankfull Discharge: 24.25 cfs 6 sq ft Bankfull Cross Sectional Area: Mean Depth Calculation Tolerance: 0.05 ft --Sediment Data--Riffle Bed Material ID: Riffle Bed Material D84: 12.89 mm 7.21 mm Riffle Bed Material D50: Bar Sample ID: Bar Sample Dmax: 51 mm Bar Sample D50: 7.16 mm --Entrainment Options--Shields Entrainment Function ------NCD Results-------Alignment--Meander Wavelength: 112.4 ft Channel Length: 129.26 ft Sinuosity: 1.15Radius of Curvature: Bankfull Slope: 27.4 ft 0.00347 Meander Belt Width: 31.41 ft Meander Width Ratio: 3.08 Deflection Angle: .8 rad --Riffle Cross Sectional Properties--Width to Depth Ratio: 17.34 Entrenchment Ratio: 8.03 Floodprone Width: 81.91 ft 10.2 ft Bankfull Width: 0.59 ft Bankfull Mean Depth: Bankfull Velocity: 4.04 ft/s 0.53 ft Bankfull Hydraulic Radius: 0.115 lbs/sq ft Bankfull Shear Stress: Required Roughness (n): $0.0142 \text{ ft}^{(1/6)}$ 7.5 mm Entrainable Particle Size:

Reference Reach:

Proposed Reach : CEXisting Reach : EXISTING REACH : EXIST	C 4 E 4
Sediment Transport Competency	
Ratio - Riffle Slope / Bankfull Slope:	1.91
Ratio - D50bed / D50bar: Critical Dimensionless Shear Stress (1): Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear Stress (2): Required Mean Depth (2):	1.007 0.0829 6.60 ft 7.074 0.0068 0.54 ft
Minimum Required Mean Depth: 0	.54 ft

```
River Name: Trib-2
Reach Name: Reach 2
--Reference Reach--
Lower Brier Creek (C4b); Reach 1 ( C 4b)
--Boundary Conditions--
                                             0.025 sq mi
Drainage Area:
Valley Slope:
                                            0.0242 ft/ft
Bankfull Discharge: 13.2 cfs
Bankfull Cross Sectional Area: 3.26 sq ft
Mean Depth Calculation Tolerance: 0.05 ft
--Sediment Data--
Riffle Bed Material ID:
                                              38.5 mm
17.2 mm
Riffle Bed Material D84:
Riffle Bed Material D50:
Bar Sample ID:
Bar Sample Dmax:
                                                51 mm
                                              7.16 mm
Bar Sample D50:
--Entrainment Options--
Shields Entrainment Function
-----NCD Results-----
--Alignment--
Meander Wavelength:
                                             54.54 ft
Channel Length:
                                             61.63 ft
Sinuosity:
                                              1.13
Radius of Curvature: Bankfull Slope:
                                             13.91 ft
                                          0.02138
                                             14.17 ft
Meander Belt Width:
Meander Width Ratio:
                                              2.18
Deflection Angle:
                                               .75 rad
--Riffle Cross Sectional Properties--
                                             12.93
Width to Depth Ratio:
                                             17.78
Entrenchment Ratio:
Floodprone Width:
                                            115.39 ft
                                              6.49 ft
Bankfull Width:
                                               0.5 ft
Bankfull Mean Depth:
Bankfull Velocity:
                                              4.05 \text{ ft/s}
Bankfull Hydraulic Radius:
                                              0.43 ft
                                            0.574 lbs/sq ft
Bankfull Shear Stress:
Required Roughness (n):
                                            0.0306 \text{ ft} \land (1/6)
Entrainable Particle Size:
                                              34.1 mm
```

Reference Reach : C 4b

Proposed Reach : Existing Reach :	C 4b E 4b	
Sediment Transport Competency		
Ratio - Riffle Slope / Bankfull S	lope:	2.27
Ratio - D50bed / D50bar: Critical Dimensionless Shear Stre Required Mean Depth (1): Ratio - Di bar / D50bed: Critical Dimensionless Shear Stre Required Mean Depth (2):	ss (1): 0. ss (2): 2	.402 0388 0.50 ft .965 0146 0.19 ft
Minimum Required Mean Depth:	0.50 ft	

	East Fork Little Sandy Stream Restoration Success Criteria															
	Geomorphological Criteria for Reconstructed and Constructed Reaches*															
	Critieria	As-B	uilt / Y	ear 1	Year 2				Year 3	3	Year 4				Year 5	5
	Crineria	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	
East Fork Little Sandy River	$W_{bkf}(ft)$	15.8	31.5	47.3	15.8	31.5	47.3	15.8	31.5	47.3	15.8	31.5	47.3	15.8	31.5	47.3
	$\mathbf{D_{bkf}}(\mathbf{ft})$	0.78	1.55	2.33	0.78	1.55	2.33	0.78	1.55	2.33	0.78	1.55	2.33	0.78	1.55	2.33
	A_{bkf} (ft ²)	24.3	48.5	72.8	24.3	48.5	72.8	24.3	48.5	72.8	24.3	48.5	72.8	24.3	48.5	72.8
ast 1	W _{bkf} (ft)	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2
Little East Fork Reach 1	$\mathbf{D}_{\mathbf{bkf}}(\mathbf{ft})$	0.47	0.93	1.40	0.47	0.93	1.40	0.47	0.93	1.40	0.47	0.93	1.40	0.47	0.93	1.40
Lit	A_{bkf} (ft ²)	9.75	19.5	29.3	9.75	19.5	29.3	9.75	19.5	29.3	9.75	19.5	29.3	9.75	19.5	29.3
ast	W _{bkf} (ft)	6.55	13.1	19.7	6.55	13.1	19.7	6.55	13.1	19.7	6.55	13.1	19.7	6.55	13.1	19.7
Little East Fork Reach 2	$\mathbf{D}_{\mathbf{bkf}}\left(\mathbf{ft}\right)$	0.69	1.38	2.07	0.69	1.38	2.07	0.69	1.38	2.07	0.69	1.38	2.07	0.69	1.38	2.07
Li	A_{bkf} (ft ²)	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2	9.05	18.1	27.2
ry 1	W _{bkf} (ft)	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75
Tributary 1 Reach 1	$\mathbf{D}_{\mathbf{bkf}}(\mathbf{ft})$	0.25	0.49	0.74	0.25	0.49	0.74	0.25	0.49	0.74	0.25	0.49	0.74	0.25	0.49	0.74
Tril R	A_{bkf} (ft ²)	1.57	3.14	4.71	1.57	3.14	4.71	1.57	3.14	4.71	1.57	3.14	4.71	1.57	3.14	4.71
y 1	W _{bkf} (ft)	4.25	8.50	12.8	4.25	8.50	12.8	4.25	8.50	12.8	4.25	8.50	12.8	4.25	8.50	12.8
Tributary 1 Reach 2	$\mathbf{D_{bkf}}(\mathbf{ft})$	0.28	0.56	0.84	0.28	0.56	0.84	0.28	0.56	0.84	0.28	0.56	0.84	0.28	0.56	0.84
Tril R	A _{bkf} (ft ²)	2.38	4.75	7.13	2.38	4.75	7.13	2.38	4.75	7.13	2.38	4.75	7.13	2.38	4.75	7.13
3 3	W _{bkf} (ft)	5.10	10.2	15.3	5.10	10.2	15.3	5.10	10.2	15.3	5.10	10.2	15.3	5.10	10.2	15.3
Tributary 1 Reach 3	$\mathbf{D_{bkf}}(\mathbf{ft})$	0.30	0.60	0.90	0.30	0.60	0.90	0.30	0.60	0.90	0.30	0.60	0.90	0.30	0.60	0.90
Tril R	A _{bkf} (ft²)	3.03	6.05	9.08	3.03	6.05	9.08	3.03	6.05	9.08	3.03	6.05	9.08	3.03	6.05	9.08
2 2	W _{bkf} (ft)	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75	3.25	6.50	9.75
Tributary 2 Reach 2	$\mathbf{D}_{\mathbf{bkf}}(\mathbf{ft})$	0.25	0.50	0.75	0.25	0.50	0.75	0.25	0.50	0.75	0.25	0.50	0.75	0.25	0.50	0.75
Tri	A _{bkf} (ft²)	1.63	3.25	4.88	1.63	3.25	4.88	1.63	3.25	4.88	1.63	3.25	4.88	1.63	3.25	4.88
Stable banks and channel		documentation bi-annually		tograph tion ly	Asssessed visually for instability. Photograph documentation bi-annually		documentation bi-annually		tograph tion	,		Asssessed visually for instability. Photograph documentation bi-annually				
DDD /b:ab =	DDD (high gradient habitat)				iteria f	or Mit or (0-1			or (0-1	16)	Avora	oo (11'	7 150)	Evec	llent (1	60+)
RBP (high gradient, habitat)		Po	or (0-1		Criter	,				10)	Avera	ige (11'	1-139)	Exce	ment (1	ιυυ+ <i>)</i>
% Native Tr	% Native Tree Species		75%	ıauvil	CINCI	75%	iantet	AICA	75%			75%			80%	
Max.% Invasive Trees			20%			20%		15%		15%				10%		
	Native Stem Density per acre		325			300		300		300				300		
	ercent any one tree Species		20%			20%			25%			25%			25%	
_	(Scientific & Common Name, tus Indicator, Native vs. Non- vasive)		Yes			Yes			Yes		Yes				Yes	

^{*}Measured stream features will likey vary as the vegetation establishes over the first few years. These changes occur as the channel evolves and do not indicate lack of project success/stability (i.e. Stream could naturally evolve from a C-type channel to an E-type channel).

V. Agency Correspondence	

1. State Historic Preservation Officer	

COMMERCE CABINET KENTUCKY HERITAGE COUNCIL

Steven L. Beshear Governor The State Historic Preservation Office

300 Washington Street Frankfort, Kentucky 40601 Phone (502) 564-7005 Fax (502) 564-5820 www.kentucky.gov

November 6, 2008

Marcheta Sparrow Secretary

Ms. Wanda Lawson Project Engineer Stantec Consulting Services, Inc. 1901 Nelson Miller Parkway Louisville, Kentucky 40223-2177

Re: Stream Restoration and Enhancement Project East Fork Little Sandy River and Tributaries

Lawrence County, Kentucky

RECEIVED

NUV OO YEE

STANTEC CONSULTING SERVICES, INC

Dear Ms. Lawson:

Thank you for your letter of October 13, 2008 (received October 14, 2008) concerning the above referenced project. A review of our files indicates that there are several previously recorded archaeological sites (15La98-100) within and immediately adjacent to the project area. The proposed project area has not been investigated by a professional archaeologist to determine if additional properties eligible for listing in the National Register of Historic Places are present. Investigations of projects in similar environmental contexts have resulted in the identification of a large number of sites, some of which have been determined eligible for listing in the National Register. Given the presence of known sites within and adjacent to the project area and the environmental setting, in my opinion, the project has a high potential for impacting archaeological sites. Therefore, I recommend that all undisturbed portions of the proposed permit area be surveyed by a professional archaeologist. Further, archaeological site 15La100, which appears to be within the project boundaries, should be revisited and its current condition evaluated. A report documenting the results of this investigation must be submitted to the State Historic Preservation Officer for review, comment, and approval.

Further, in order to make a preliminary determination if above-ground properties eligible for listing in the National Register of Historic Places will be affected by this project, the applicant must submit photographs of all structures 50 years or older that are within and adjacent to the project area. Each photograph should be labeled by street address with a brief description of potential impacts or proposed treatment, and should be accompanied by a project map showing their location. Upon completion of our review, this office will advise the applicant if further consultation is required. Should you have any questions, feel free to contact Kary Stackelbeck of my staff at 564-7005, ext. 147.

Sincerely,

Mark Dennen,

Acting Executive Director and State Historic Preservation Officer

MD:kls

2. Department of the Interior	

United States Department of the Interior

FISH AND WILDLIFE SERVICE Kentucky Ecological Services Field Office 330 West Broadway, Suite 265 Frankfort, Kentucky 40601 (502) 695-0468 December 1, 2008

Mr. Mike Hardin Kentucky Department of Fish and Wildlife Resources #1 Sportsman's Lane Frankfort, KY 40601

Subject:

FWS #2009-B-0025, Biological Assessment, East Fork of the Little Sandy River

Stream Restoration and Enhancement Project

Dear Mr. Hardin:

We received your letter dated October 31, 2008 and the enclosed Biological Assessment (BA) prepared for the proposed East Fork Little Sandy Stream Restoration Project. This project involves three phases of restoration and enhancement totaling approximately 25,112 linear feet of stream on the East Fork of the Little Sandy River and its associated tributaries.

We have reviewed the submitted BA for the Indiana bat (Myotis sodalis). This BA states that there is a lack of potential winter/swarming habitat within the action area and that direct impacts to summer habitat will be avoided by removing trees only during the period when Indiana bats are expected to be absent from the area (October 15 through March 31). Additionally, the project site is 21 miles from the nearest known Indiana bat hibernacula and 23 miles from the nearest designated critical habitat (Bat Cave, Carter County). Best management practices will be employed during construction to minimize any sediment impacts associated with the stream construction of the restoration projects.

Based on the submitted information, we concur with the not likely to adversely affect determination for the Indiana bat and with the no effect finding on critical habitat (i.e., no adverse modification) for the Indiana bat. Based on these determinations and our concurrences with them, we believe that the requirements of section 7 have been fulfilled as it relates to federally listed species listed in the BA. Obligations under section 7 must be reconsidered, however, if: (1) new information reveals that the proposed project may affect listed species or proposed critical habitat in a manner or to an extent not previously considered, (2) the proposed project is subsequently modified to include activities which were not considered during this consultation, or (3) new species are listed or critical habitat designated that might be affected by the proposed project.

If you need additional assistance in determining if a proposed project may impact a federally listed species, we recommend that you contact us for further assistance. Thank you for the opportunity to comment on this proposed action. If you have any questions regarding the information we have provided, please contact Jennifer Garland at (502) 695-0468 extension 115.

Sincerely,

Virgil Lee Andrews, Jr.

Field Supervisor